Combinatorial Optimization Problems

  • Christodoulos A. Floudas
  • Pãnos M. Pardalos
  • Claire S. Adjiman
  • William R. Esposito
  • Zeynep H. Gümüş
  • Stephen T. Harding
  • John L. Klepeis
  • Clifford A. Meyer
  • Carl A. Schweiger
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 33)

Abstract

Combinatorial optimization problems possess a discrete special structure, such that it is very difficult to develop general purpose test problems, as well as general purpose software for solving them. For the exact solution of these problems, usually an equivalent integer programming formulation is provided to an IP solver, that uses branch and bound to solve it. For a suboptimal solution, many heuristic procedures have been refined over the years, and there exist procedures designed to provide suboptimal solutions to general combinatorial optimization problems, given that the problem has been put into some prespecified format.

Keywords

Test Problem Travel Salesman Problem Chromatic Number Steiner Tree Maximum Clique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Christodoulos A. Floudas
    • 1
  • Pãnos M. Pardalos
    • 2
  • Claire S. Adjiman
    • 1
  • William R. Esposito
    • 1
  • Zeynep H. Gümüş
    • 1
  • Stephen T. Harding
    • 1
  • John L. Klepeis
    • 1
  • Clifford A. Meyer
    • 1
  • Carl A. Schweiger
    • 1
  1. 1.Department of Chemical EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Department of Industrial and Systems EngineeringUniversity of FloridaUSA

Personalised recommendations