The intestinal microflora and inflammatory bowel disease

  • Vinton S. Chadwick
  • Wangxue Chen
Chapter

Abstract

Inflammatory bowel disease (IBD) is an umbrella term used to describe three conditions, Crohn’s disease (CD), ulcerative colitis (UC) and nonspecific colitis. The latter condition may be an intermediate form of the other two and is a common form of IBD in children. Both CD and UC are chronic relapsing inflammatory disorders of the intestine and in this respect differ from self-limited inflammation caused by infections or toxins. They are also distinct from more recently recognized milder forms of chronic inflammation called microscopic colitis, which comes in at least two varieties known as lymphocytic and collagenous colitis (Kingham, 1991). Microscopic colitis and inflammation caused by ischaemia or therapeutic radiation will not be discussed, even though the intestinal bacterial microflora may play an important role in these conditions.

Keywords

Inflammatory Bowel Disease Ulcerative Colitis Intestinal Bacterium Intestinal Microflora Microscopic Colitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aluwihare, A. P. R. (1971) Electron microscopy in Crohn’s disease. Gut, 12, 509.PubMedGoogle Scholar
  2. Ambrose, N. S., Johnson, M., Burdon, D. W. et al. (1984) Incidence of pathogenic bacteria from mesenteric lymph nodes and ileal serosa during Crohn’s disease surgery. British Journal of Surgery, 71, 623.PubMedGoogle Scholar
  3. Anderson, R. P., Woodhouse, A. F., Myers, D. B. et al. (1987) Hepatobiliary excretion and enterohepatic circulation of bacterial chemotactic peptide (FMLP) in the rat. Journal of Gastroenterology and Hepatology, 2, 45.Google Scholar
  4. Anton, P. A., Targan, S. R. and Shanahan, F. (1989) Increased neutrophil receptors for and response to proinflammatory bacterial peptide formyl-methionyl-leucyl-phenylalanine in Crohn’s disease. Gastroenterology, 97, 20.PubMedGoogle Scholar
  5. Baca-Estrada, M., Wong, D. and Croitoni, K. (1995) Cytotoxic activity of Vß8+ T cells in Crohn’s disease: the role of bacterial superantigens. Clinical and Experimental Immunology, 99, 398.PubMedGoogle Scholar
  6. Barr, G., Hudson, M., Priddle, J. et al. (1987) Colonic bacterial proteases to IgA1 and sIgA in patients with ulcerative colitis. Gut, 28, 186.PubMedGoogle Scholar
  7. Bell, J. I. and Jewell, D. P. (1991) Mycobacterium paratuberculosis DNA cannot be detected in Crohn’s disease tissues. Gastroenterology, 100, A611.Google Scholar
  8. Belsheim, M. R., Darwish, R. Z., Watson, W. C. et al. (1983) Bacterial L-form isolation from inflammatory bowel disease patients. Gastroenterology, 85, 364.PubMedGoogle Scholar
  9. Benno, P., Leijonmarck, C. E., Monsen, U. et al. (1993) Functional alterations of the microflora in patients with ulcerative colitis. Scandinavian Journal of Gastroenterology, 28, 839.PubMedGoogle Scholar
  10. Blaser, M. J., Hoverson, D., Ely, I. G. et al. (1984) Studies of Campylobacter jejuni in patients with inflammatory bowel disease. Gastroenterology, 86, 33.PubMedGoogle Scholar
  11. Blichfeldt, P., Blomhoff, J. P., Myhre, E. et al. (1978) Metronidazole in Crohn’s disease. A double blind cross-over clinical trial. Scandinavian Journal of Gastroenterology, 13, 123.PubMedGoogle Scholar
  12. Brandwein, S., McCabe, R., Ridwan, B. et al. (1994) Immunologic reactivity of colitic C3H/HeJBir mice to enteric bacteria. Gastroenterology, 106, A656.Google Scholar
  13. Brandwein, S., McCabe, R., Ridwan, B. et al. (1995) Spontaneously colitic C3H/ HeJBir mice demonstrate antibody reactivity to isolated colonies of enteric bacteria. Gastroenterology, 108, 787.Google Scholar
  14. Briggs, M. S., Cornell, D. G., Dulhy, R. A. et al. (1986) Conformations of signal peptides induced by lipids suggests initial steps in protein export. Science, 233, 206.PubMedGoogle Scholar
  15. Brooke, B. N. (1956) Outcome of surgery for ulcerative colitis. Lancet, ii, 532.Google Scholar
  16. Broom, M. F., Sherriff, R. M., Tate, W. P. et al. (1989) Partial purification and characterisation of a formyl-methionine deformylase from rat small intestine. Biochemical Journal, 257, 51.PubMedGoogle Scholar
  17. Broom, M. F., Sherriff, R. M., Munster, D. et al. (1992) Identification of formyl MetLeu-Phe in culture filtrates of Helicobacter pylori. Microbios, 72, 239.Google Scholar
  18. Broom, M., Sherriff, R., Ferry, D. et al. (1993) Formylmethionyl-leucylphenylalanine and the SOS operon in Escherichia coli: a model of host—bacterial interaction. Biochemical Journal, 291, 895.PubMedGoogle Scholar
  19. Brown, W. R. and Lee, E. (1974) Radioimmunological measurements of bacterial antibodies. Human serum antibodies reactive with Bacteroides fragilis and enterococcus in gastrointestinal and immunological disorders. Gastroenterology, 66, 1145.PubMedGoogle Scholar
  20. Brunello, F., Pera, A., Martini, S. et al. (1991) Antibodies to Mycobacterium para-tuberculosis in patients with Crohn’s disease. Digestive Diseases and Sciences, 36, 1741.PubMedGoogle Scholar
  21. Burke, D. and Axon, A. (1988) Adhesive Escherichia coli in inflammatory bowel disease and infective diarrhoea. British Medical Journal, 297, 102.PubMedGoogle Scholar
  22. Burke, D., Axon, A., Clayden, S. et al. (1990) The efficacy of tobramycin in the treatment of ulcerative colitis. Alimentary Pharmacology and Therapeutics, 4, 123.PubMedGoogle Scholar
  23. Butcher, P. D., McFadden, J. J. and Hermon-Taylor, J. (1988) Investigation of mycobacteria in Crohn’s disease tissue by Southern blotting and DNA hybridisation with cloned mycobacterial genomic DNA probes from a Crohn’s disease isolated mycobacteria. Gut, 29, 1222.PubMedGoogle Scholar
  24. Chadwick, V. S., Mellor, D. M., Myers, D. B. et al. (1988) Production of peptides inducing chemotaxis and lysosomal enzyme release in human neutrophils by intestinal bacteria in vitro and in vivo. Scandinavian Journal of Gastroenterology, 23, 121.Google Scholar
  25. Chao, L., Stelle, J., Rodrigues, C. et al. (1988) Specificity of antibodies secreted by hybridomas generated from activated B cells in the mesenteric lymphnodes of patients with inflammatory bowel disease. Gut, 29, 35.PubMedGoogle Scholar
  26. Chapman, M., Grahn, M., Boyle, M. et al. (1994) Butyrate oxidation is impaired in the colonic mucosa of sufferers of quiescent ulcerative colitis. Gut, 35, 73.PubMedGoogle Scholar
  27. Chester, J. F., Ross, J. S., Malt, R. A. et al. (1985) Acute colitis produced by chemotactic peptides in rats and mice. American Journal of Pathology, 121, 284.PubMedGoogle Scholar
  28. Chiodini, R. J., van Kruiningen, H. J. and Merkal, R. S. (1984) Ruminant para-tuberculosis (John’s disease). The current status and future prospects. Cornell Veterinarium, 74, 218.Google Scholar
  29. Chiodini, R. J., van Kruiningen, H. J., Thayer, W. R. et al. (1984) Possible role of mycobacteria in inflammatory bowel disease. I. An unclassified Mycobacterium species isolated from patients with Crohn’s disease. Digestive Diseases and Sciences, 29, 1073.PubMedGoogle Scholar
  30. Chiodini, R. J., van Kruiningen, H. J., Thayer, W. R. et al. (1986) Spheroplastic phase of mycobacteria isolated from patients with Crohn’s disease. Journal of Clinical Microbiology, 24, 357.PubMedGoogle Scholar
  31. Cong, Y., Brandwein, S., McCabe, R. et al. (1995) Th1 response to enteric bacteria in colitic C3H/HeJBir mice. Clinical Immunology and Immunopathology, 76 (Suppl.), S44.Google Scholar
  32. Cooke, E. (1967) A quantitative comparison of the faecal flora of patients with ulcerative colitis and that of normal persons. Journal of Pathology and Bacteriology, 9, 439.Google Scholar
  33. Cooke, E. M., Ewins, S. P., Gywel-Jones, J. et al. (1974) Properties of strains of Escherichia coli carried in different phases of ulcerative colitis. Gut, 15, 143.PubMedGoogle Scholar
  34. Dalton, H., Hoang, P. and Jewell, D. (1992) Antigen induced suppression in peripheral blood and lamina propria mononuclear cells in inflammatory bowel disease. Gut, 33, 324.PubMedGoogle Scholar
  35. Desai, U., Kreutzer, D. L., Showell, H. et al. (1979) Acute inflammatory pulmonary reactions induced by chemotactic factors. American Journal of Pathology, 96, 71.PubMedGoogle Scholar
  36. Duchmann, R., Kaiser, I., Hermann, E. et al. (1995) Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clinical and Experimental Immunology, 102, 448.PubMedGoogle Scholar
  37. Duchmann, R., Schmitt, E., Knolle, P. et al. (1996) Tolerance towards resident intestinal flora in mice is abrogated in experimental colitis and restored by treatment with interleukin-10 or antibodies to interleukin-12. European Journal of Immunology, 26, 934.PubMedGoogle Scholar
  38. Ebert, E. C., Bhat, B. D., Liu, S. et al. (1991) Induction of suppressor cells by Mycobacterium paratuberculosis antigen in inflammatory bowel disease. Clinical and Experimental Immunology, 83, 320.PubMedGoogle Scholar
  39. Edmiston, J. C. E., Avant, G. R. and Wilson, F. A. (1982) Anaerobic bacterial populations on normal and diseased human biopsy tissue obtained at colonoscopy. Applied and Environmental Microbiology, 43, 1173.PubMedGoogle Scholar
  40. Ekbom, A. and Adami, H.-O. (1992) The epidemiology of inflammatory bowel disease, in Current Topics in Gastroenterology. Inflammatory Bowel Disease, (eds R. P. MacDermott and W. F. Stenson ), Elsevier, New York, p. 1.Google Scholar
  41. Ekbom, A., Adami, H.-O., Helmick, C. G. et al. (1990) Perinatal risk factors for inflammatory bowel disease: a case-controlled study. American Journal of Epidemiology, 132, 1111.PubMedGoogle Scholar
  42. Ekbom, A., Helmick, C., Zack, M. et al. (1991) The epidemiology of inflammatory bowel disease: a large population-based study in Sweden. Gastroenterology, 100, 350.PubMedGoogle Scholar
  43. Ekbom, A., Wakefield, A., Zack, M. et al. (1994) Perinatal measles infection and subsequent Crohn’s disease. Lancet, 344, 508.PubMedGoogle Scholar
  44. Elsaghier, A., Prantera, C., Moreno, C. et al. (1992) Antibodies to Mycobacterium paratuberculosis — specific protein antigens in Crohn’s disease. Clinical and Experimental Immunology, 90, 503.PubMedGoogle Scholar
  45. Elson, C., Sartor, R., Tennyson, G. et al. (1995) Experimental models of inflammatory bowel disease. Gastroenterology, 109, 1344.PubMedGoogle Scholar
  46. Fabia, R., Ar’Rajab, A., Johansson, M. L. et al. (1993) Impairment of bacterial flora in human ulcerative colitis and experimental colitis in the rat. Digestion, 54, 248.PubMedGoogle Scholar
  47. Ferry, D. M., Butt, T. J., Broom, M. F. et al. (1989) Bacterial chemotactic oligopeptides and the intestinal mucosal barrier. Gastroenterology, 97, 61.Google Scholar
  48. Fink, P. C., Suin de Boutemard, C. and Haeckel, R. (1988) Endotoxaemia in patients with Crohn’s disease: a longitudinal study of elastase/alphal-proteinase inhibitor and limulus-amoebocyte-lysate reactivity. Journal of Clinical Chemistry and Clinical Biochemistry, 26, 117.Google Scholar
  49. Fiocchi, C., Battisto, J. R. and Farmer, R. G. (1981) Studies on isolated gut mucosal lymphocytes in inflammatory bowel disease. Detection of activated T-cells and enhanced proliferation to Staphylococcus aureus and lipopolysaccharides. Digestive Diseases and Sciences, 26, 728.PubMedGoogle Scholar
  50. Fletcher, M. P. and Gallin, J. I. (1983) Human neutrophils contain an intracellular pool of putative receptors for the chemoattractant N-formyl-methionyl-leucylphenylalanine. Blood, 62, 792.PubMedGoogle Scholar
  51. Gallin, J. I. and Seligmann, B. E. (1984) Mobilization and adaptation of human neutrophil chemoattractant fMet-Leu-Phe receptors. Federation Proceedings, 43, 2732.Google Scholar
  52. Gans, H. and Matsumoto, K. (1974) The escape of endotoxin from the intestine. Surgery, Gynecology and Obstetrics, 139, 395.Google Scholar
  53. Gardner, J P., Melnick, D. A. and Malech, H. L. (1986) Characterization of the formyl-peptide chemotactic receptor appearing at the phagocytic cell surface after exposure to phorbol myristate acetate. Journal of Immunology,136 1400.Google Scholar
  54. Giaffer, M. H., Holdsworth, C. D. and Duerden, B. I. (1991) The assessment of faecal flora in patients with inflammatory bowel disease by a simplified bacteriological technique. Journal of Medical Microbiology, 35, 238.PubMedGoogle Scholar
  55. Gilligan, P. H., McCarthy, L. R. and Genta, V. W. (1981) Relative frequency of Clostridium difficile in patients with diarrheal disease. Journal of Clinical Microbiology, 14, 26.PubMedGoogle Scholar
  56. Gitnick, G., Collins, J., Beaman, B. et al. (1989) Preliminary report on isolation of mycobacteria from patients with Crohn’s disease. Digestive Diseases and Sciences, 34, 925.Google Scholar
  57. Goodman, M. J., Pearson, K. W., McGhie, D. et al. (1980) Campylobacter and Giardia lamblia causing exacerbation of inflammatory bowel disease. Lancet, ii, 1247.Google Scholar
  58. Gorbach, S., Nahas, L., Plaut, A. et al. (1968) Studies of intestinal microflora—fecal microbial ecology in ulcerative colitis and regional enteritis: relationship to severity of disease and chemotherapy. Gastroenterology, 54, 575.PubMedGoogle Scholar
  59. Graham, D. Y., Markesich, D. C. and Yoshimura, H. H. (1987) Mycobacteria and inflammatory bowel disease. Results of culture. Gastroenterology, 92, 436.PubMedGoogle Scholar
  60. Granger, D. N., Zimmerman, B. J., Sekizuka, E. et al. (1988) Intestinal microvascular exchange in the rat during luminal perfusion with formyl-methionylleucyl-phenylalanine. Gastroenterology, 94, 673.Google Scholar
  61. Green, E. P., Tizard, M. L., Moss, M. T. et al. (1989) Sequence and characteristics of 15900, an insertion element identified in a human Crohn’s disease isolate of Mycobacterium paratuberculosis. Nucleic Acids Research, 17, 9063.Google Scholar
  62. Greenfield, C., Aguilar Ramirez, J. R., Pounder, R. E. et al. (1983) Clostridium difficile and inflammatory bowel disease. Gut, 24, 713.Google Scholar
  63. Guillemot, F., Colombel, J. F., Neut, C. et al. (1991) Treatment of diversion colitis by short chain fatty acids: prospective and double-blind study. Diseases of the Colon and Rectum, 34, 861.Google Scholar
  64. Guiot, H. F. L., van den Broek, P. J., van der Meer, J. W. M. et al. (1983) Selective antimicrobial modulation of the intestinal flora of patients with acute nonlymphocytic leukemia: a double-blind, placebo-controlled study. Journal of Infectious Diseases, 147, 615.Google Scholar
  65. Hammer, R. E., Maika, S. D., Richardson, J. A. et al. (1990) Spontaneous inflammatory disease in transgenic rats expressing HLA-B27-associated human disorders. Cell, 63, 1099.Google Scholar
  66. Harper, P., Truelove, S., Lee, E. et al. (1983) Split ileostomy and ileocolostomy for Crohn’s disease of the colon and ulcerative colitis: a 20 year survey. Gut, 24, 106.PubMedGoogle Scholar
  67. Harper, P. H., Lee, E. C. G., Kettlewell, M. G. W. et al. (1985) Role of the faecal stream in the maintenance of Crohn’s colitis. Gut, 26, 279.PubMedGoogle Scholar
  68. Hartley, M. G., Hudson, M. J., Swarbrick, E. T. et al. (1993) Adhesive and hydrophobic properties of Escherichia coli from the rectal mucosa of patients with ulcerative colitis. Gut, 34, 63.PubMedGoogle Scholar
  69. Hermon-Taylor, J. (1993) Causation of Crohn’s disease: the impact of clusters (editorial). Gastroenterology, 104, 643.PubMedGoogle Scholar
  70. Hobson, C. H., Butt, T. J., Ferry, D. M. et al. (1988) Enterohepatic circulation of bacterial chemotactic peptide in rats with experimental colitis. Gastroenterology, 94, 1006.PubMedGoogle Scholar
  71. Hobson, C. H., Roberts, E. C., Broom, M. F. et al. (1990) Radio-immunoassay for formyl methionyl leucyl phenylalanine. I. Development and application to assessment of chemotactic peptide production by enteric bacteria. Journal of Gastroenterology and Hepatology, 5, 32.PubMedGoogle Scholar
  72. Hodgson, H. J. F., Wands, J. R. and Isselbacher, K. J. (1978) Decreased suppressor cell activity in inflammatory bowel disease. Clinical and Experimental Immunology, 32, 451.PubMedGoogle Scholar
  73. Hoeksma, A. and Winkler, K. C. (1963) The normal flora of the nose in twins. Acta Leidensia, 32, 123.PubMedGoogle Scholar
  74. Holdleman, L. V., Good, I. J. and Moore, W. E. C. (1976) Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Applied and Environmental Microbiology, 31, 359.Google Scholar
  75. Horing, E., Gopfert, D., Schroter, G. et al. (1991) Frequency and spectrum of microorganisms isolated from biopsy specimens in chronic colitis. Endoscopy, 23, 325.PubMedGoogle Scholar
  76. Hugot, J. P., Laurent-Puig, P., Gower-Rousseau, C. et al. (1996) Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature, 379, 821.PubMedGoogle Scholar
  77. Ibbotson, J. P. and Lowes, J. R. (1995) Potential role of superantigen induced activation of cell mediated immune mechanisms in the pathogenesis of Crohn’s disease (review). Gut, 36, 1.Google Scholar
  78. Ibbotson, J. P., Pease, P. E. and Allan, R. N. (1987a) Cell-wall deficient bacteria in inflammatory bowel disease. European Journal of Clinical Microbiology, 6, 429.PubMedGoogle Scholar
  79. Ibbotson, J. P., Pease, P. E. and Allan, R. N. (1987b) Serological studies in Crohn’s disease. European Journal of Clinical Microbiology, 6, 286.PubMedGoogle Scholar
  80. Ibbotson, J., Lowes, J., Chahal, H. et al. (1992) Mucosal cell-mediated immunity to mycobacterial, enterobacterial and other microbial antigens in inflammatory bowel disease. Clinical and Experimental Immunology, 87, 224.PubMedGoogle Scholar
  81. lizuka, M., Nakagomi, O., Chiba, M. et al. (1995) Absence of measles virus in Crohn’s disease. Lancet, 345, 660.Google Scholar
  82. Inouye, M. and Halegova, S. (1980) Secretion and membrane localization of proteins in Escherichia coli. CRC Critical Reviews in Biology, 7, 339.Google Scholar
  83. Johnson, L. E. W. and Wirostko, W. (1989) Crohn’s disease uveitis — parasitization of vitreous leukocytes by mollicute-like organisms. American Journal of Clinical Pathology, 91, 259.PubMedGoogle Scholar
  84. Kaulfersch, W., Fiocchi, C. and Waldmann, T. A. (1988) Polyclonal nature of the intestinal mucosal lymphocyte populations in inflammatory bowel disease. A molecular genetic evaluation of the immunoglobulin and T-cell antigen receptors. Gastroenterology, 95, 364.PubMedGoogle Scholar
  85. Keighley, M., Arabi, Y., Dimock, F. et al. (1978) Influence of inflammatory bowel disease on intestinal microflora. Gut, 19, 1099.PubMedGoogle Scholar
  86. Keller, H. U. and Sorkin, E. (1967) Studies on chemotaxis. V: On the chemotactic effect of bacteria. International Archives of Allergy, 31, 505.Google Scholar
  87. Kelley, C. J., Ingoldby, C. J. H:, Blenkharn, J. I. et al. (1985) Colonoscopy related endotoxemia. Surgery Gynecology and Obstetrics, 161, 332.Google Scholar
  88. Kelly, D. G., Phillips, S. F., Kelly, K. A. et al. (1983) Dysfunction of the continent ileostomy: clinical features and bacteriology. Gut, 24, 193.PubMedGoogle Scholar
  89. Kingham, J. G. (1991) Microscopic colitis (review). Gut, 32, 234.PubMedGoogle Scholar
  90. Koletzko, S., Griffiths, A., Corey, M. et al. (1991) Infant feeding practices and ulcerative colitis in childhood. British Medical Journal, 302, 1580.PubMedGoogle Scholar
  91. Kotani, S., Tsujimoto, M., Koga, T. et al. (1986) Chemical structure and biological activity relationship of bacterial cell walls and muramyl peptides. Federation Proceedings, 45, 2534.PubMedGoogle Scholar
  92. Kreuzpaintner, G., Horstkotte, D., Heyll, A. et al. (1992) Increased risk of bacterial endocarditis in inflammatory bowel disease. American Journal of Medicine, 92, 391.PubMedGoogle Scholar
  93. Kuhn, R., Lohler, J., Rennick, D. et al. (1993) Interleukin-l0-deficient mice develop chronic enterocolitis. Cell, 75, 263.PubMedGoogle Scholar
  94. Laffineur, G., Lescut, D., Vincent, P. et al. (1992) Translocation bacterienne dans la maladie de Crohn. Gastroenterology and Clinical Biology, 16, 777.Google Scholar
  95. LeDuc, L. E. and Nast, C. C. (1990) Chemotactic peptide-induced acute colitis in rabbits. Gastroenterology, 98, 989.Google Scholar
  96. Liu, Y., van Kruiningen, H. J., West, A. B. et al. (1995) Immunocytochemical evidence of Listeria, Escherichia coli, and Streptococcus antigens in Crohn’s disease. Gastroenterology, 108, 1396.Google Scholar
  97. Luukkonen, P., Valtonen, V., Sivonen, A. et al. (1988) Fecal bacteriology and reservoir ileitis in patients operated on for ulcerative colitis. Diseases of the Colon and Rectum, 31, 864.PubMedGoogle Scholar
  98. McFadden, J. J. and Seechurn, P. (1992) Mycobacteria and Crohn’s disease. Molecular approaches, in Current Topics in Gastroenterology. Inflammatory Bowel Disease, (eds R. P. MacDermott and W. F. Stenson ), Elsevier, New York, p. 259.Google Scholar
  99. McFadden, J. J., Butcher, P. D., Chiodini, R. et al. (1987) Crohn’s disease-isolated mycobacteria are identical to Mycobacterium paratuberculosis, as determined by DNA probes that distinguish between mycobacterial species. Journal of Clinical Microbiology, 25, 796.PubMedGoogle Scholar
  100. McGarity, B. H., Robertson, D. A. F., Clarke, I. N. et al. (1991) Deoxyribonucleic acid amplification and hybridisation in Crohn’s disease using a chlamydial plasmid probe. Gut, 32, 1011.PubMedGoogle Scholar
  101. Macpherson, A., Khoo, U. Y., Forgacs, I. et al. (1996) Mucosal antibodies inGoogle Scholar
  102. inflammatory bowel disease are directed against intestinal bacteria. Gut,38 365. Madden, M. V., Farthing, M. J. G. and Nicholls, R. J. (1990) Inflammation in ileal reservoirs: ‘pouchitis’. Gut,31 247.Google Scholar
  103. Marasco, W. A., Phan, S. H., Krutzsch, H. et al. (1984) Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. Journal of Biological Chemistry, 259, 5430.Google Scholar
  104. Markesich, D. C., Graham, D. Y. and Yoshimura, H. H. (1988) Progress in culture and subculture of spheroplasts and fastidious acid-fast bacilli isolated from intestinal tissues. Journal of Clinical Microbiology, 26, 1600.PubMedGoogle Scholar
  105. Matthews, N., Mayberry, J. F., Rhodes, J. et al. (1980) Agglutinins to bacteria in Crohn’s disease. Gut, 21, 376.PubMedGoogle Scholar
  106. Mellor, D. M., Myers, D. B. and Chadwick, V. S. (1986) The cored sponge model of in vivo leucocyte chemotaxis. Agents and Actions, 18, 550.PubMedGoogle Scholar
  107. Metcalf, A. M. and Phillips, S. F. (1986) Ileostomy diarrhoea. Clinics in Gastroenterology, 15, 705.PubMedGoogle Scholar
  108. Millar, D., Ford, J., Sanderson, J. et al. (1996) IS900 PCR to detect Mycobacterium paratuberculosis in retail supplies of whole pasteurized cows’ milk in England and Wales. Applied and Environmental Microbiology, 62, 3446–52.PubMedGoogle Scholar
  109. Miura, A., Amaya, Y. and Mori, M. (1986) A metalloprotease involved in the processing of mitochondrial precursor proteins. Biochemical and Biophysical Research Communications, 134, 1151.PubMedGoogle Scholar
  110. Mizuno, K., Hoshino, M., Hayakawa, T. et al. (1996) Uncoupling of biliary lipid from bile acid secretion by formyl-methionyl-leucyl-phenylalanine in the rats. Hepatology, 24, 1224.PubMedGoogle Scholar
  111. Mombaerts, P., Mizoguchi, E., Grusby, M. et al. (1993) Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell, 75, 275.Google Scholar
  112. Mooney, C., Keenan, J., Munster, D. et al. (1991) Neutrophil activation by Helicobacter pylori. Gut, 32, 853.Google Scholar
  113. Moss, M., Sanderson, J., Tizard, M. et al. (1992) Polymerase chain reaction detection of Mycobacterium paratuberculosis and Mycobacterium avium subsp silvaticum in long term cultures from Crohn’s disease and control tissues. Gut, 33, 1209.PubMedGoogle Scholar
  114. Murray, A., Oliaro, J., Schlup, M. et al. (1995) Mycobacterium paratuberculosis and inflammatory bowel disease: frequency distribution in serial colonoscopic biopsies. Microbios, 83, 217.Google Scholar
  115. Nakamura, S., Mikawa, M., Nakashio, S. et al. (1981) Isolation of Clostridium difficile from feces and the antibody sera of young and elderly adults. Microbiology and Immunology, 25, 345.PubMedGoogle Scholar
  116. Neut, C., Colombel, J. F., Guillemot, F. et al. (1989) Impaired bacterial flora in human excluded colon. Gut, 30, 1094.PubMedGoogle Scholar
  117. Nolan, J. P., Hare, D. K., McDevitt, J. J. et al. (1977) In vitro studies of intestinal endotoxin absorption. I. Kinetics of absorption in the isolated everted gut sac. Gastroenterology, 72, 434.PubMedGoogle Scholar
  118. Novak, P., Ray, P. H. and Dev, I. K. (1986) Localization and purification of two enzymes from Escherichia coli capable of hydrolyzing a signal peptide. Journal of Biological Chemistry, 261, 420.PubMedGoogle Scholar
  119. O’Connell, P. R., Rankin, D. R., Weiland, L. H. et al. (1986) Enteric bacteriology, absorption, morphology and emptying after ileal pouch-anal anastomosis. British Journal of Surgery, 73, 909.PubMedGoogle Scholar
  120. Ohkusa, T., Okayasu, I., Tokoi, S. et al. (1993) Bacterial invasion into the colonic mucosa in ulcerative colitis. Journal of Gastroenterology and Hepatology, 8, 116.PubMedGoogle Scholar
  121. Okayasu, I., Hatakeyama, S., Yamada, M. et al. (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology, 98, 694.PubMedGoogle Scholar
  122. Olafsson, P., Nylander, G. and Olsson, P. (1986) Endotoxin: route of transport in experimental peritonitis. American Journal of Surgery, 151, 443.Google Scholar
  123. Onderdonk, A. (1985) Experimental models for ulcerative colitis. Digestive Diseases and Sciences, 30, 40.Google Scholar
  124. Onderdonk, A. B. and Bartlett, J. G. (1979) Bacteriological studies of experimental ulcerative colitis. American Journal of Nutrition, 32, 258.Google Scholar
  125. Onderdonk, A. B., Franklin, M. L. and Cisneros, R. L. (1981) Production of experimental ulcerative colitis in gnotobiotic guinea pigs with simplified micro-flora. Infection and Immunity, 32, 225.PubMedGoogle Scholar
  126. Parent, K. and Mitchell, P. (1978) Cell wall-defective variants of pseudomonas-like (group Va) bacteria in Crohn’s disease. Gastroenterology, 75, 368.PubMedGoogle Scholar
  127. Pavli, P., Cavanaugh, J. and Grimm, M. (1996) Inflammatory bowel disease: germs or genes (comment)? Lancet, 347, 1198.PubMedGoogle Scholar
  128. Peach, S., Lock, M. R., Katz, D. et al. (1978) Mucosal-associated bacterial flora of the intestine in patients with Crohn’s disease and in a control group. Gut, 19, 1034.PubMedGoogle Scholar
  129. Philipson, B., Brandberg, A., Jagenburg, R. et al. (1975) Mucosal morphology, bacteriology, and absorption in intra-abdominal ileostomy reservoir. Scandinavian Journal of Gastroenterology, 10, 145.PubMedGoogle Scholar
  130. Phillips, S. F. (1987) Biological effects of a reservoir at the end of the small bowel. World Journal of Surgery, 11, 763.PubMedGoogle Scholar
  131. Pitcher, M. and Cummings, J. H. (1996) Hydrogen sulphide: a bacterial toxin in ulcerative colitis? Gut, 39, 1.PubMedGoogle Scholar
  132. Posnett, D. N., Schmelkin, I., Burton, D. A. et al. (1990) T cell antigen receptor V gene usage: increases in V138+ T cells in Crohn’s disease. Journal of Clinical Investigation, 85, 1770.PubMedGoogle Scholar
  133. Rath, H. C., Herfarth, H. H., Ikeda, J. S. et al. (1996) Normal luminal bacteria, especially bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. Journal of Clinical Investigation, 98, 945.PubMedGoogle Scholar
  134. Rhodes, J. B. and Kirsner, J. B. (1965) The early and late course of patients with ulcerative colitis after ileostomy and colectomy. Surgery, Gynecology and Obstetrics, 121, 1303.Google Scholar
  135. Robert, A. and Asano, T. (1977) Resistance of germ free rats to indomethacininduced intestinal lesions. Prostaglandins, 14, 331.Google Scholar
  136. Roediger, W. E. W. (1980) Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut, 21, 793.PubMedGoogle Scholar
  137. Roediger, W. E. (1993) Reducing sulfur compounds of the colon impair colonocyte nutrition: implications for ulcerative colitis. Gastroenterology, 104, 802.PubMedGoogle Scholar
  138. Roediger, W. E. W., Heyworth, M., Willoughby, P. et al. (1982) Luminal ions and short chain fatty acids as markers of functional activity of the mucosa in ulcerative colitis. Journal of Clinical Pathology, 35, 323.PubMedGoogle Scholar
  139. Rogers, M. J., Moore, R. and Cohen, J. (1985) The relationship between faecal endotoxin and faecal microflora of the C57BL. Journal of Hygiene, 95, 397.PubMedGoogle Scholar
  140. Rot, A., Henderson, L. E. and Leonard, E. J. (1986) Staphylococcus aureus-derived chemoattractant activity for human monocytes. Journal of Leukocyte Biology, 40, 43.Google Scholar
  141. Rot, A., Henderson, L. E., Sowder, R. et al. (1989) Staphylococcus aureus tetrapeptide with high chemotactic potency and efficacy for human leukocytes. Journal of Leukocyte Biology, 45, 114.Google Scholar
  142. Rowbotham, D. S., Mapstone, N. P., Trejdosiewicz, L. K. et al. (1995) Mycobacterium paratuberculosis DNA not detected in Crohn’s disease tissue by fluorescent polymerase chain reaction. Gut, 37, 660.PubMedGoogle Scholar
  143. Rudolph, U., Finegold, M. J., Rich, S. S. et al. (1995) Gi2 alpha protein deficiency: a model of inflammatory bowel disease. Journal of Clinical Immunology, 15, 101.Google Scholar
  144. Ruseler-van Embden, J. G. and Both-Patoir, H. C. (1983) Anaerobic gram-negative faecal flora in patients with Crohn’s disease and healthy subjects. Antonie van Leeuwenhoek, 49, 125.Google Scholar
  145. Ruseler-van Embden, J. and van Lieshout, L. (1987) Increased faecal glycosidases in patients with Crohn’s disease. Digestion, 37, 43.Google Scholar
  146. Rutgeerts, P., Geboes, K., Vantrappen, G. et al. (1990) Predictability of the postoperative course of Crohn’s disease. Gastroenterology, 99, 956.PubMedGoogle Scholar
  147. Rutgeerts, P., Geboes, K., Peeters, M. et al. (1991) Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet, 338, 771.PubMedGoogle Scholar
  148. Rutgeerts, P., D’Haens, G., Hiele, M. et al. (1994) Appendectomy protects against ulcerative colitis. Gastroenterology, 106, 1251.PubMedGoogle Scholar
  149. Sadlack, B., Merz, H., Schorle, H. et al. (1993) Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell, 75, 253.PubMedGoogle Scholar
  150. Sanderson, J D., Moss, M. T., Tizard, M. L. V. et al. (1992) Mycobacterium para-tuberculosis DNA in Crohn’s disease tissue. Gut,33, 890.Google Scholar
  151. Santavirta, J., Mattila, J., Kokki, M. et al. (1991) Mucosal morphology and faecal bacteriology after ileoanal anastomosis. International Journal of Colorectal Diseases, 6, 38.Google Scholar
  152. Sartor, R., Rath, H. and Sellon, R. (1996) Microbial factors in chronic intestinal inflammation. Current Opinion in Gastroenterology, 12, 327.Google Scholar
  153. Sartor, R. B., Bond, T. M., Compton, K. Y. et al. (1986) Intestinal absorption of bacterial cell wall polymers in rats. Advances in Experimental Medicine and Biology, 216A, 835.Google Scholar
  154. Satsangi, J. Grootscholten, C., Holt, H. et al. (1996) Clinical patterns of familial inflammatory bowel disease. Gut,38 738.Google Scholar
  155. Savage, D. C. (1970) Associations of indigenous microorganisms with gastrointestinal mucosal epithelia. American Journal of Clinical Nutrition,23 1495.Google Scholar
  156. Saverymuttu, S., Hodgson, H. J. F. and Chadwick, V. S. (1985) Controlled trial comparing prednisolone with an elemental diet plus non-absorbable antibiotics in active Crohn’s disease. Gut, 26, 994.PubMedGoogle Scholar
  157. Scheurlen, C., Kruis, W., Spengler, U. et al. (1988) Crohn’s disease is frequently complicated by Giardiasis. Scandinavian Journal of Gastroenterology, 23, 833.PubMedGoogle Scholar
  158. Schiffman, E., Corcoran, B. A. and Wahl, S. M. (1975) N-formylmethionyl peptides as chemoattractants for leucocytes. Proceedings of the National Academy of Sciences of the USA, 72, 1059.Google Scholar
  159. Schiffman, E., Corcoran, B. A., Ward, P. A. et al. (1975) The isolation and partial purification of neutrophil chemotactic factors from Escherichia coli. Journal of Immunology, 114, 1831.Google Scholar
  160. Schleifer, K. H. and Krause, R. M. (1971) The immunochemistry of peptidoglycan. Journal of Biological Chemistry, 264, 986.Google Scholar
  161. Sedgwick, D., Drummond, J., Clarke, J. et al. (1990) Workload implications of the relentless increase in incidence of Crohn’s disease. Gut,31 Al205.Google Scholar
  162. Seneca, H. and Henderson, E. (1950) Normal intestinal bacteria in ulcerative colitis. Gastroenterology, 15, 34.PubMedGoogle Scholar
  163. Shafii, A., Sopher, S., Lev, M. et al. (1981) An antibody against revertant forms of cell-wall deficient bacterial variant in sera from patients with Crohn’s disease. Lancet, ii, 332.Google Scholar
  164. Soper, N. J., Orkin, B. A., Kelly, K. A. et al. (1989) Gastrointestinal transit after proctocolectomy with ileal pouch-anal anastomosis or ileostomy. Journal of Surgical Research, 46, 300.Google Scholar
  165. Stainsby, K. J. (1993) Antibodies to Mycobacterium paratuberculosis and nine species of environmental mycobacteria in Crohn’s disease and control subjects. Gut, 34, 371.Google Scholar
  166. Stryker, S. J., Borody, T. J., Phillips, S. F. et al. (1985) Motility of the small intestine after proctocolectomy and ileal pouch-anal anastomosis. Annals of Surgery, 201, 351.Google Scholar
  167. Styrt, B. (1989) Species variation in neutrophil biochemistry and function. Journal of Leukocyte Biology, 46, 63.PubMedGoogle Scholar
  168. Tabaqchali, S., O’Donoghue, D. P. and Bettelheim, K. A. (1978) Escherichia coli antibodies in patients with inflammatory bowel disease. Gut, 19, 108.Google Scholar
  169. Tanaka, K., Wilks, M., Coates, P. J. et al. (1991) Mycobacterium paratuberculosis and Crohn’s disease. Gut, 32, 43.Google Scholar
  170. Thaylor-Robison, S., Miles, R., Whitehead, A. et al. (1989) Salmonella infection and ulcerative colitis. Lancet, i, 1145.Google Scholar
  171. Thompson, N., Montgomery, S., Pounder, R. et al. (1995) Is measles vaccination a risk factor for inflammatory bowel disease? Lancet, 345, 1071.PubMedGoogle Scholar
  172. Thompson, N. P., Driscoll, R., Pounder, R. E. et al. (1996) Genetics versus environment in inflammatory bowel disease: results of a British twin study. British Medical Journal, 312, 95.PubMedGoogle Scholar
  173. Tysk, C., Lindberg, E., Jarnerot, G. et al. (1988) Ulcerative colitis and Crohn’s disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut, 29, 990.PubMedGoogle Scholar
  174. van de Merwe, J. P. and Mol, G. J. (1980) A possible role of Eubacterium and Peptostreptococcus species in the aetiology of Crohn’s disease. Antonie van Leeuwenhoek, 46, 587.PubMedGoogle Scholar
  175. van de Merwe, J. P. and Stegeman, J. H. (1985) Binding Coprococcus comes to the Fc portion of IgG. A possible role in the pathogenesis of Crohn’s disease? European Journal of Immunology, 15, 860.PubMedGoogle Scholar
  176. van de Merwe, J. P., Stegeman, J. H. and Hazenberg, M. P. (1983) The resident faecal flora is determined by genetic characteristics of the host. Implications for Crohn’s disease? Antonie van Leeuwenhoek, 49, 119.PubMedGoogle Scholar
  177. van de Merwe, J. P., Schroder, A. M., Wensinck, F. et al. (1988) The obligate anaerobic faecal flora of patients with Crohn’s disease and their first-degree relatives. Scandinavian Journal of Gastroenterology, 23, 1125.PubMedGoogle Scholar
  178. van Kruiningen, H., Colombel, J., Cartun, R. et al. (1992) An in-depth study of Crohn’s disease in two French families. Gastroenterology, 103, 351.Google Scholar
  179. Videla, S., Vilaseca, J., Guarner, F. et al. (1994) Role of intestinal microflora in chronic inflammation and ulceration of the rat colon. Gut, 35, 1090.PubMedGoogle Scholar
  180. von Ritter, C., Sekizuka, E., Grisham, M. B. et al. (1988) The chemotactic peptide Nformyl methionyl-leucyl-phenylalanine increases mucosal permeability in the distal ileum of the rat. Gastroenterology, 95, 651.PubMedGoogle Scholar
  181. Wade, J. C., de Jongh, C. A., Newman, K. A. et al. (1983) Selective antimicrobial modulation as prophylaxis against infection during granulocytopenia: trimethoprim—sulfamethoxazole vs nalidixic acid. Journal of Infectious Diseases, 147, 624.PubMedGoogle Scholar
  182. Wakefield, A. J., Pittilo, R. M., Sim, R. et al. (1993) Evidence of persistent measles virus infection in Crohn’s disease. Journal of Medical Virology, 39, 345.PubMedGoogle Scholar
  183. Ward, P. A., Lepow, I. H. and Newman, L. J. (1968) Bacterial factors chemotactic for polymorphonuclear leukocytes. American Journal of Pathology, 52, 725.PubMedGoogle Scholar
  184. Weber, P., Koch, M., Heizmann, W. et al. (1992) Microbic superinfection in relapse of inflammatory bowel disease. Journal of Clinical Gastroenterology, 14, 302.PubMedGoogle Scholar
  185. Wellemann, W., Flink, P., Benner, F. et al. (1986) Endotoxinaemia in active Crohn’s disease. Treatment with whole gut irrigation and 5 aminosalicylic acid. Gut, 27, 177.Google Scholar
  186. Wells, C. (1990) Relationship between intestinal microecology and the translocation of intestinal bacteria. Antonie van Leeuwenhoek, 58, 87.PubMedGoogle Scholar
  187. Wells, C., Maddaus, M. and Simmons, R. (1987) Role of the macrophage in the translocation of intestinal bacteria. Archives of Surgery, 122, 48.PubMedGoogle Scholar
  188. Wells, C., Maddaus, M., Jechorek, R. et al. (1988a) Role of intestinal anaerobic bacteria in colonization resistance. European Journal of Clinical Microbiology and Infectious Diseases, 7, 107.Google Scholar
  189. Wells, C., Maddaus, M. A. and Simmons, R. L. (1988b) Proposed mechanisms for the translocation of intestinal bacteria. Reviews of Infectious Diseases, 10, 958.PubMedGoogle Scholar
  190. Wensinck, F. and van de Merwe, J. P. (1981) Serum agglutinins to Eubacterium and Peptostreptococcus species in Crohn’s and other diseases. Journal of Hygiene, 87, 13.PubMedGoogle Scholar
  191. Wensinck, F., Custers-Van, L., Poppelaars-Kustermans, P. A. et al. (1981) The faecal flora of patients with Crohn’s disease. Journal of Hygiene, 87, 1.PubMedGoogle Scholar
  192. Wensinck, F., van de Merwe, J. and Mayberry, J. (1983) An international study of agglutinins to Eubacterium, Peptostreptococcus and Coprococcus species in Crohn’s disease, ulcerative colitis and control subjects. Digestion, 27, 63.PubMedGoogle Scholar
  193. West, B., Lendrum, R., Hill, M. et al. (1974) Effects of sulphasalazine (Salazopyrin) on faecal flora in patients with inflammatory bowel disease. Gut, 15, 960.PubMedGoogle Scholar
  194. Wirostko, E., Johnson, L. and Wirostko, B. (1990) Ulcerative colitis associated chronic uveitis. Parasitization of intraocular leucocytes by mollicute-like organisms. Journal of Submicroscopic Cytology and Pathology, 22, 231.PubMedGoogle Scholar
  195. Woodhouse, A. F., Anderson, R. P., Myers, D. B. et al. (1987) Intestinal absorption, metabolism and effects of bacterial chemotactic peptides in rat intestine. Journal of Gastroenterology and Hepatology, 2, 35.Google Scholar
  196. Yamada, M., Ohkusa, T. and Okayasu, I. (1992) Occurrence of dysplasia and adenocarcinoma after experimental chronic ulcerative colitis in hamsters induced by dextran sulphate sodium. Gut, 33, 1521.PubMedGoogle Scholar
  197. Yamada, T., Deitch, E., Specian, R. et al. (1993) Mechanisms of acute and chronic intestinal inflammation induced by indomethacin. Inflammation, 17, 641.PubMedGoogle Scholar
  198. Yang, H., Shohat, T. and Rotter, J. I. (1992) The genetics of inflammatory bowel disease, in Current Topics in Gastroenterology. Inflammatory Bowel Disease, (eds R. P. MacDermott and W. F. Stenson ), Elsevier, New York, p. 17.Google Scholar
  199. Yoshimura, H. H., Graham, D. Y., Estes, M. K. et al. (1987) Investigation of association of mycobacteria with inflammatory bowel disease by nucleic acid hybridization. Journal of Clinical Microbiology, 25, 45.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Vinton S. Chadwick
  • Wangxue Chen

There are no affiliations available

Personalised recommendations