Abstract

The Low Noise Amplifier (LNA) is one of the most important and crucial parts in a telecommunications transceiver. It is the first active circuit in the receiver part following the antenna as shown in Fig. 5.1 for the superheterodyne architecture. Due to its location in the receiver chain, it dominates the noise performance and the VSWR of the complete system. Therefore, a LNA must exhibit low noise figure, high gain, good linearity performance and input VSWR as low as possible.

Keywords

Noise Figure Spiral Inductor Bipolar Device Bipolar Technology Emitter Terminal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    L.E. Larson, “Integrated Circuit Technology Options for RF IC ’s - Present Status and Future Directions, ” IEEE 1997 CICC, paper no. 9.1. 1, pp. 169 – 176.Google Scholar
  2. [2]
    R.G. Meyer and W.D Mack, “A 1-GHz BiCMOS RF Front-End IC, ” IEEE Journal of Solid-State Circuits, vol. 29, no. 3, pp. 350 – 355, March 1994.CrossRefGoogle Scholar
  3. [3]
    J.R. Long and M.A. Copeland, “A 1.9 GHz Low-Voltage Silicon Bipolar Receiver Front-End for Wireless Personal Communication Systems, ” IEEE Journal of Solid-State Circuits, vol. 30, no. 12, pp. 1438 – 1448, December 1995.CrossRefGoogle Scholar
  4. [4]
    S. Iversen, “The effect of feedback on noise figure, ” in Proc. IEEE, Mar. 1975, vol. 63, pp. 540 – 542.Google Scholar
  5. [5]
    H. Fukui, “The noise performance of microwave transistors, ” IEEE Trans. Electron Devices, vol. 63, pp. 329 - 341, March 1966.CrossRefGoogle Scholar
  6. [6]
    G. C. Dawe, J. M. Mouraut, and A. P. Brokaw, “A 2.7V DECT RF Tranceiver with integrated VCO, ” IEEE ISSCC 97, Session 18, Paper SA 18. 5, pp. 308 “ 309.Google Scholar
  7. [7]
    R. G. Meyer and R. A. Blauschild, “A 4 - Terminal Wide - Band Mondithic Amplifier, ” IEEE J. Solid-State Circuits, vol. SC-16, no. 6, pp. 634 – 638, Dec. 1981.CrossRefGoogle Scholar
  8. [8]
    K. H. Chan and R. G. Meyer, “A low - distortion monolithic wideband amplifier, ” IEEE J. Solid-State Circuits, vol. SC-12, pp. 685 – 690, Dec. 1977.Google Scholar
  9. [9]
    A. N. Karanicolas, “A 2.7V 900 MHz CMOS LNA and Mixer, ” IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 1939 – 1944, Dec. 1996.CrossRefGoogle Scholar
  10. [10]
    A. N. Karanicolas, “A 2.7V 900 MHz CMOS LNA and Mixer, ”IEEE ISSCC 96, Session 3, Paper TP 3. 2, pp. 50 – 51.Google Scholar
  11. [11]
    P. J. Sullivan, B. A. Xavier, and W. H. Ku, “An Integrated CMOS Distributed Amplifier Utilizing Packaging Inductance, ” IEEE Trans. on Microwve Theory and Techniques, vol. 45, no. 10, pp. 1969 – 1976, October 1997.CrossRefGoogle Scholar
  12. [12]
    S. Pipilos, Y. Tsividis, J. Fenk, and Y. Papananos, “A Si 1.8 GHz RLC Filter with Tunable Center Frequency and Quality Factor, ” IEEE J. Solid-State Circuits, vol. 31, pp. 1517 – 1525, Oct. 1996.CrossRefGoogle Scholar
  13. [13]
    K. L. Fong, C. D. Hull, and R. G. Meyer, “A Class AB Monolithic Mixer for 900 MHz Applications, ”IEEE J. Solid-State Circuits, vol. 32, pp. 1166 – 1172, Aug. 1997.CrossRefGoogle Scholar
  14. [14]
    J. C. Rudell, J-J On, T. B. Cho, G. Chien, F. Brianti, J. A. Weldon, and P. R. Gray, “A 1.9 GHz Wide - Band IF Double Conversion CMOS Integrated Receiver for Cordless Telephone Applications, ” IEEE ISSCC 97, Session 18, Paper 18. 3, pp. 304 – 305.Google Scholar
  15. [15]
    J. Macedo, M. Copeland, and P. Schvan, “A 1.9 GHz Silicon Receiver with On - chip Image Filtering, ” IEEE 1997 CICC, pp. 181–184.Google Scholar
  16. [16]
    C-Y Wu and S-Y Hsiao, “The Design of a 3-V 900 MHz CMOS Bandpass Amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 2, pp. 159 – 168, Feb. 1997.CrossRefGoogle Scholar
  17. [17]
    R. G. Meyer and W. D. Mack, “A 2.5 GHz BiCMOS Transceiver for Wireless LAN, ” IEEE ISSCC97, Paper 18. 6, pp. 310 – 311.Google Scholar
  18. [18]
    J N. Burghartz, M. Soyuer, K. A. Jenkins, M. Kies, M. Dolan, K. J. Stein, J. Malinowski, and D. L. Harame, “Integrated RF Components in a SiGe Bipolar Technology, ” IEEE J. Solid-State Circuits, vol. 32, no. 9, pp. 1440 – 1445, Sept. 1997.CrossRefGoogle Scholar
  19. [19]
    A. Schuppen, H. Dietrich, S. Gerlach, H. Hohnemann, J. Arndt, U. Seiler, R. Gotzfried, U. Erben, and H. Schumacher, “SiGe Technology and Components for Mobile Communication Systems, ” in Proc. Bipolar Circuits and Technology Meeting, 1996, pp. 130 – 133.Google Scholar
  20. [20]
    A. Schuppen, A. Gruhle, U. Erben, H. Kibbel, and U. Konig, “Multi - emitter finger SiGe HBT’s with Fmax up to 120 GHz, ” in Tech Dig. Int. Electron Devices Meeting, 1994, pp. 337 – 380.Google Scholar
  21. [21]
    H. Ainspan, M. Soyuer, J. O. Plouchart, and J. Burghartz, “A 6.25 GHz Low DC Power Low - Noise Amplifier in SiGe, ” IEEE CICC 1997, Paper 9.2. 1, pp. 127 – 180.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Yannis E. Papananos
    • 1
  1. 1.National Technical University of AthensAthensGreece

Personalised recommendations