Classical Topics in Complex Function Theory pp 147-165 | Cite as
The Theorems of Montel and Vitali
Chapter
Abstract
In infinitesimal calculus, the principle of selection of convergent sequences in bounded subsets M of ℝn is crucial: Every sequence of points in M has a subsequence that converges in ℝn (Bolzano-Weierstrass property). The extension of this accumulation principle to sets of functions is fundamental for many arguments in analysis. But caution is necessary: There are sequences of real-analytic functions from the interval [0, 1] into a fixed bounded interval that have no convergent subsequences. A nontrivial example is the sequence sin 2nπx; cf. 1.1.
Keywords
Holomorphic Function Normal Family Convergent Subsequence Riemann Mapping Theorem Identity Theorem
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
Bibliography
- [Bl]BLASCHKE, W.: Eine Erweiterung des Satzes von Vitali über Folgen analytischer Funktionen, Ber. Verh. Königl. Sächs. Ges. Wiss. Leipzig 67, 194–200 (1915); Ges. Werke 6, 187–193.Google Scholar
- [Bu]BURCKEL, R. B.: An Introduction to Classical Complex Analysis, vol. 1, Birkhäuser, 1979.Google Scholar
- [Ca]CARLEMAN, T.: Über die Approximation analytischer Funktionen durch lineare Aggregate von vorgegebenen Potenzen, Ark. för Mat. Astron. Fys. 17, no. 9 (1923).Google Scholar
- [CL]CARATHÉODORY, C. and E. LANDAU: Beiträge zur Konvergenz von Funktionenfolgen, Sitz. Ber. Königl. Preuss. Akad. Wiss., Phys.-math. Kl. 26, 587–613 (1911); CARATHÉODORY’S Ges. Math. Schriften 3, 13–44; LANDAU’s Coll. Works 4, 349–375.Google Scholar
- [G]GOLITSCHEK, M. V.: A short proof of Müntz’s theorem, Journ. Approx. Theory 39, 394–395 (1983).CrossRefGoogle Scholar
- [HS]HERMITE, C. and T.-J. STIELTJES: Correspondance d’Hermite et de Stieltjes, vol. 2, Gauthier-Villars, Paris, 1905.zbMATHGoogle Scholar
- [Hi]HILBERT, D.: Über das Dirichletsche Prinzip, Jber. DMV 8, 184–188 (1899); Ges. Abh. 3, 10–14.Google Scholar
- [J]JENTZSCH, R.: Untersuchungen zur Theorie der Folgen analytischer Funktionen, Acta Math. 41, 219–251 (1917).MathSciNetCrossRefGoogle Scholar
- [K]KOEBE, P.: Ueber die Uniformisierung beliebiger analytischer Kurven, Dritte Mitteilung, Nachr. Königl. Ges. Wiss. Göttingen, Math. phys. Kl. 1908, 337–358.Google Scholar
- [Li]LINDELOF, E.: Démonstration nouvelle d’un théorème fondamental sur les suites de fonctions monogènes, Bull. Soc. Math. France 41, 171–178 (1913).MathSciNetCrossRefGoogle Scholar
- [LR]LÖWNER, K. and T. RadÔ: Bemerkung zu einem Blaschkeschen Konvergenzsatze, Jber. DMV 32, 198–200 (1923).zbMATHGoogle Scholar
- [Mol]MONTEL, P.: Sur les suites infinies de fonctions, Ann. Sci. Éc. Norm. Sup. 24, 233–334 (1907).MathSciNetCrossRefGoogle Scholar
- Mo2] MONTEL, P.: Leçons sur les familles normales de fonctions analytiques etGoogle Scholar
- leurs applications,Gauthier-Villars, Paris, 1927; reissued 1974 by Chelsea Publ. Co., New York.Google Scholar
- [Mü]MÜNTZ, C. H.: Über den Approximationssatz von Weierstraß, Math. Abh. H. A. Schwarz gewidmet, 303–312, Julius Springer, 1914.Google Scholar
- [O]OSGOOD, W. F.: Note on the functions defined by infinite series whose terms are analytic functions of a complex variable; with corresponding theorems for definite integrals, Ann. Math.,2nd ser., 3, 25–34 (1901–1902).MathSciNetCrossRefGoogle Scholar
- [R]PORTER, M. B.: Concerning series of analytic functions, Ann. Math.,2nd ser., 6, 190–192 (1904–1905).MathSciNetCrossRefGoogle Scholar
- [Ro]ROGERS, L. C. G.: A simple proof of Müntz’s theorem, Math. Proc. Cambridge Phil. Soc. 90, 1–3 (1981).CrossRefGoogle Scholar
- [Rud]RUDIN, W.: Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987.zbMATHGoogle Scholar
- [Run]RUNGE, C.: Zur Theorie der analytischen Functionen, Acta Math. 6, 245–248 (1885).MathSciNetCrossRefGoogle Scholar
- [St]STIELTJES, T.-J: Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse 8, 1–22 (1894).MathSciNetCrossRefGoogle Scholar
- [SZ]SAKS, S. and A. ZYGMUND: Analytic Functions, 3rd ed., Elsevier, Warsaw, 1971.zbMATHGoogle Scholar
- [V]VITALI, G.: Sopra le serie de funzioni analitiche, Rend. Ist. Lombardo, 2. Ser. 36, 772–774 (1903) and Ann. Mat. Pur. Appl., 3. Ser. 10, 65–82 (1904).Google Scholar
Copyright information
© Springer Science+Business Media New York 1998