Behavioral Pharmacology of Cocaine

  • Sharon L. Walsh
Chapter

Abstract

The behavioral pharmacological characteristics of cocaine have been investigated in nonhumans and humans for several decades. Various experimental approaches have been utilized to explore the physiological, subjective, behavioral, and psychological effects of cocaine. This chapter reviews findings regarding the behavioral pharmacology of cocaine use encompassing data from both animal and human laboratory studies. The first two sections provide an overview of the pharmacological actions of cocaine and the patterns of cocaine abuse. The next three sections review select studies characterizing (1) the subjective effects of cocaine in humans, (2) the discriminative stimulus properties of cocaine, and (3) the reinforcing properties of cocaine assessed using the drug self-administration paradigm. Preclinical drug-discrimination and self-administration studies of cocaine are abundant and a complete review of these studies is beyond the scope of this chapter. Thus, preclinical data will be synthesized to illustrate principal findings and more detailed analysis of the results from studies with humans, when available, will be provided.

Keywords

Discriminative Stimulus Subjective Effect Discriminative Stimulus Effect Drug Discrimination Abuse Liability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abreu, M. E., Walsh, S. L., Bonson, K. R., Ginn, D., and Bigelow, G. E. (1997). Effects of intravenous injection speed on responses to cocaine or hydromorphone in humans. In Problems of Drug Dependence 1996, Proceedings of the 58th Annual Scientific Meeting, The College on Problems of Drug Dependence, Inc. (NIDA Research Monographs, NIDA Research Monograph No. 174, p. 139 ). Rockville, MD: U.S. Government Printing Office.Google Scholar
  2. Ando, K., and Yanagita, T. (1978). The discriminative stimulus properties of intravenously administered cocaine in rhesus monkeys. In G. C. Colpaert and J. A. Rosecrans (Eds.), Stimulus properties of drugs: Ten years of progress (pp. 125–136 ). Amsterdam: Elsevier/North.Google Scholar
  3. Bergman, J., Madras, B. K., Johson, S. E., and Spealman, R. D. (1989). Effects of cocaine and related drugs in nonhuman primates. 111. Self-administration by squirrel monkeys. Journal of Pharmacology and Experimental Therapeutics, 251, 150–155.Google Scholar
  4. Bergman, J., Kamien, J. B., and Spealman, R. D. (1990). Antagonism of cocaine self-administration by selective D, and D, antagonists. Behavioural Pharmacology, 1, 355–363.PubMedGoogle Scholar
  5. Bickel. W. K., DeGrandpre, R. J., and Higgins, S. T. (1995). The behavioral economics of concurrent drug rein-forcers: A review and reanalysis of drug self-administration research. Psychopharmacology, 118, 250–259.CrossRefGoogle Scholar
  6. Bigelow, G. E. (1991). Human drug abuse liability assessment: Opioids and analgesics. British Journal ofAddiction, 86. 1615–1628.CrossRefGoogle Scholar
  7. Brain, P. E, and Coward, G. A. (1989). A review of the history, actions and legitimate uses of cocaine. Journal of Substance Abuse, 11, 431–451.Google Scholar
  8. Callahan, P. M., Appel, J. B., and Cunningham, K. A. (1991). Dopamine Di and D, mediation of the discriminative stimulus properties of d-amphetamine and cocaine. Psychopharmacology, 103, 50–55.CrossRefGoogle Scholar
  9. Chait, L. D., Uhlenhuth, E. H., and Johanson, C-E. (1985). The discriminative stimulus and subjective effects of d-amphetamine in humans. Psychopharmacology, 86, 307–312.PubMedCrossRefGoogle Scholar
  10. Colpaert, F. C., and Janssen, P. A. J. (1982). Factors regulating drug cue sensitivity: Limits of discriminability and the role of a progressively decreasing training dose in cocaine-saline discrimination. Neuropharmacology, 21, 1187–1194.PubMedCrossRefGoogle Scholar
  11. Colpaert, E C., Niemegeers, C. J. E., and Janssen, P. A. J. (1976). Cocaine cue in rats as it relates to subjective drug effects: A preliminary report. European Journal of Pharmacology, 10, 195–199.CrossRefGoogle Scholar
  12. Cunningham, K. A., and Callahan, P. M. (1991). Monoamine reuptake inhibitors enhance the discriminative state induced by cocaine in the rat. Psychopharmacology 104, 177–180.PubMedCrossRefGoogle Scholar
  13. de la Garza, R., and Johanson, C-E. (1983). The discriminative stimulus properties of cocaine in the rhesus monkey. Pharmacology, Biochemistry and Behavior, 19, 145–148.CrossRefGoogle Scholar
  14. de la Garza, R., and Johanson, C-E. (1986). The discriminative stimulus properties of cocaine and d-amphetamine: The effects of three routes of administration. Pharmacology, Biochemistry and Behavior, 24, 765–768.CrossRefGoogle Scholar
  15. Deneau, E, Yanagita, T., and Seevers, M. H. (1969). Self-administration of psychoactive substances by the monkey: A measure of psychological dependence. Psychopharmacologia, 16, 30–48.PubMedCrossRefGoogle Scholar
  16. de Wit, H., and Wise, R. A. (1977). Blockade of cocaine reinforcement in rats with the dopamine receptor blocker pimozide, but not with the noradrenergic blockers phentolamine or phenoxybenzamine. Canadian Journal of Psychology 31, 195–203.PubMedCrossRefGoogle Scholar
  17. Dudish, S. A., Pentel, P. R., and Hatsukami, D. K. (1996). Smoked cocaine self-administration in females. Psychopharmacology, 123, 79–87.PubMedCrossRefGoogle Scholar
  18. Evans, S. M., Cone, E. J., and Henningfield, J. E. (1996). Arterial and venous cocaine plasma concentrations in humans: Relationship to route of administration, cardiovascular effects and subjective effects. Journal of Pharmacology and Experimental Therapeutics, 279, 135–1356.Google Scholar
  19. Fibiger, H. C., Phillips, A. G., and Brown, E. E. (1992). The neurobiology of cocaine-induced reinforcement. In R. Bock and J. Whelan (Eds.), Cocaine: Scientific and social dimensions (Ciba Foundation Symposium, Vol. 166, pp. 96–111 ). New York: Wiley.Google Scholar
  20. Fischman, M. W., and Schuster, C. R. (1982). Cocaine self-administration in humans. Federation Proceedings, 41, 241–246.PubMedGoogle Scholar
  21. Fischman, M. W, Schuster, C. R., Resnekov, L., Schick, J. F. E., Krasnegor, N. A., Fennell, W, and Freedman, D. X. (1976). Cardiovascular and subjective effects of intravenous cocaine administration in humans. Archives of General Psychiatry, 33, 983–989.PubMedCrossRefGoogle Scholar
  22. Fischman, M. W., Foltin, R. W, Nestadt, G., and Pearlson, G. D. (1990). Effects of desipramine maintenance on cocaine self-administration by humans. Journal of Pharmacology and Experimental Therapeutics, 253, 760–770.PubMedGoogle Scholar
  23. Foltin, R. W, and Fischman, M. W. (1991). Smoked and intravenous cocaine in humans: Acute tolerance, cardiovascular and subjective effects. Journal of Pharmacology and Experimental Therapeutics, 257, 247–261.PubMedGoogle Scholar
  24. Foltin, R. W, and Fischman, M. W. (1992). Self-administration of cocaine by humans: Choice between smoked and intravenous cocaine. Journal of Pharmacology and Experimental Therapeutics, 261, 841–849.PubMedGoogle Scholar
  25. Foltin, R. W., and Fischman, M. W. (1994). Effects of buprenorphine on the self-administration of cocaine by humans. Behavioural Pharmacology, 5, 79–89.PubMedCrossRefGoogle Scholar
  26. Foltin, R. W, Fischman, M. W., Pedroso, J. J., and Pearlson, G. D. (1988). Repeated intranasal cocaine administration: Lack of tolerance to pressor effects. Drug and Alcohol Dependence, 22, 169–177.PubMedCrossRefGoogle Scholar
  27. Foltin, R. W., Fischman, M. W., Pippen, P. A., and Kelly, T. H. (1993). Behavioral effects of cocaine alone and in combination with ethanol or marijuana in humans. Drug and Alcohol Dependence, 32, 93–106.PubMedCrossRefGoogle Scholar
  28. George, F. R., Elmer, G. I., Meisch, R. A., and Goldberg, S. R. (1991). Orally delivered cocaine functions as a positive reinforcer in C57BL/6J mice. Pharmacology, Biochemistry and Behavior, 38, 897–903.CrossRefGoogle Scholar
  29. Goddard, D., de Goddard, S. N., and Whitehead, P. C. (1969). Social factors associated with coca use in the Andean region. International Journal of the Addictions, 4, 577–590.Google Scholar
  30. Goeders, N. E., and Smith, J. E. (1986). Reinforcing properties of cocaine in the medial prefrontal cortex: Primary action on presynaptic dopaminergic terminals. Pharmacology, Biochemistry and Behavior, 25, 191–196.CrossRefGoogle Scholar
  31. Goldberg, S. R., Morse, W. H., and Goldberg, D. M. (1976). Behavior maintained under a second-order schedule by intramuscular injection of morphine or cocaine in rhesus monkeys. Journal of Pharmacology and Experimental Therapeutics, 199, 278–286.PubMedGoogle Scholar
  32. Gossop, M., Griffiths, P., Powis, B., and Strang, J. (1994). Cocaine: Patterns of use, route of administration and severity of dependence. British Journal of Psychiatry, 164, 660–664.PubMedCrossRefGoogle Scholar
  33. Gratton, A. (1996). In vivo analysis of the role of dopamine in stimulant and opiate self-administration. Journal of Psychiatry and Neuroscience, 21, 264–279.PubMedGoogle Scholar
  34. Griffiths, R. R., Evans, S. M., Heishman, S. J., Preston, K. L., Sannerud, C. A., Wolf, B., and Woodson, P. O. (1990). Low-dose caffeine discrimination in humans. Journal of Pharmacology and Experimental Therapeutics, 252, 970–978.PubMedGoogle Scholar
  35. Griffiths, R. R., Lamb, R. J., Sannerud, C. A., Ator, N. A., and Brady, J. V. (1991). Self-injection of barbiturates, benzodiazepines and other sedative-anxiolytics in baboons. Psychopharmacology, 103, 154–161.PubMedCrossRefGoogle Scholar
  36. Grinspoon, L., and Bakalar, J. B. (1981). Coca and cocaine as medicines: A historical review. Journal of Ethnopharmacology, 3, 149–159.PubMedCrossRefGoogle Scholar
  37. Haberny, K. A., Walsh, S. L., Ginn, D. H., Wilkins, J. N., Garner, J. E., Setoda, D., and Bigelow, G. E. (1995). Absence of acute cocaine interactions with the MAO-B inhibitor selegiline. Drug and Alcohol Dependence, 39, 55–62.PubMedCrossRefGoogle Scholar
  38. Haertzen, C. A. (1974). An overview of the Addiction Research Center Inventory (ARCI): An appendix and manual of scales (DHEW Publication No. 79 ). Washington, DC: U.S. Department of Health, Education and Welfare.Google Scholar
  39. Harris, J. E., and Baldessarini, R. J. (1973). Uptake of [3H]catecholamines by homogenates of rat corpus striatum and cerebral cortex: Effects of amphetamine analogues. Neuropharmacology, 12, 659–679.CrossRefGoogle Scholar
  40. Hatsukami, D. K., and Fischman, M. W. (1996). Crack cocaine and cocaine hydrochloride. Are the differences myth or reality? Journal of the American Medical Association, 276, 1580–1588.PubMedCrossRefGoogle Scholar
  41. Hatsukami, D. K., Thompson, T. N., Pentel, P. R., Flygare, B. K., and Carroll, M. E. (1994). Self-administration of smoked cocaine. Experimental and Clinical Psychopharmacology, 2, 115–125.CrossRefGoogle Scholar
  42. Heikkila, R. E., Cabbat, E S., Manzino, R. C., and Du-voisin, R. C. (1979). Rotational behavior induced by cocaine analogs in rats with unilateral 6-hydroxydopamine lesions of the substantia nigra: Dependence upon dopamine uptake inhibition. Journal of Pharmacology and Experimental Therapeutics, 211, 189–194PubMedGoogle Scholar
  43. Higgins, S. T., Bickel, W. K., and Hughes, J. R. (1994). Influence of an alternative reinforcer on human cocaine self-administration. Life Sciences, 55, 179–187.PubMedCrossRefGoogle Scholar
  44. Hill, H. E., Haertzen, C. A., Wolbach, A. B., and Miner, E. J. (1963). The Addiction Research Inventory: Standardization of scales which evaluate subjective effects of morphine, amphetamine, pentobarbital, alcohol, LSD-25, pyrahexyl and chlorpromazine. Psychopharmacologia, 4, 167–183.PubMedCrossRefGoogle Scholar
  45. Jarbe, T. U. C. (1981). Cocaine cue in pigeons: Time course studies and generalization to structurally related compounds (norcocaine, WIN 35,428 and 35,065–2) and (+)-amphetamine. British Journal of Pharmacology, 73, 843–852.PubMedCrossRefGoogle Scholar
  46. Jasinski, D. R., Johnson, R. E., and Henningfield, J. E. (1984). Abuse liability assessment in human subjects. Trends in Pharmacological Sciences, 5, 196–200.CrossRefGoogle Scholar
  47. Javaid, J. I., Fischman, M. W., Schuster, C. R., Dekirmenjian, H., and Davis, J. M. (1978). Cocaine plasma concentration: Relation to physiological and subjective effects in humans. Science, 202, 227–228.PubMedCrossRefGoogle Scholar
  48. Johanson, C-E., and Barrett, J. E. (1993). The discriminative stimulus effects of cocaine in pigeons. Journal of Pharmacology and Experimental Therapeutics, 267, 1–8.PubMedGoogle Scholar
  49. Johanson, C-E., and Fischman M. W. (1989). The pharmacology of cocaine related to its abuse. Pharmacological Reviews, 41, 3–52.PubMedGoogle Scholar
  50. Johanson, C-E., and Schuster, C. R. (1975). A choice procedure for drug reinforcers: Cocaine and methylphenidate in the rhesus monkey. Journal of Pharmacology and Experimental Therapeutics, 193, 676–688.PubMedGoogle Scholar
  51. Johanson, C-E., Balster, R. L., and Bonese, K. (1976). Self-administration of psychomotor stimulant drugs: The effects of unlimited access. Pharmacology, Biochemistry and Behavior, 4, 45–51.CrossRefGoogle Scholar
  52. Kilpatrick, G. J., Jones, B. J., and Tyers, M. B. (1989). Binding of the 5-HT3ligand GR65630, to rat area postrema vagus nerve and the brain of several species. European Journal of Pharmacology, 159, 157–164.PubMedCrossRefGoogle Scholar
  53. Kleven, M. S., Anthony, E. W, and Woolverton, W. L. (1990). Pharmacological characterization of the discriminative stimulus effects of cocaine in rhesus monkeys. Journal of Pharmacology and Experimental Therapeutics, 254, 312–317.PubMedGoogle Scholar
  54. Koe, B. K. (1976). Molecular geometry of inhibitors of the uptake of catecholamines and serotonin in synaptosomal preparations of rat brain. Journal of Pharmacol- ogy and Experimental Therapeutics, 199, 649–661.Google Scholar
  55. Koob, G. F. (1992a). Drugs of abuse: Anatomy, pharmacology and function of reward pathways. Trends in Pharmacological Sciences, 13, 177–184.PubMedCrossRefGoogle Scholar
  56. Koob, G. E (1992b). Neural mechanisms of drug reinforcement. Annals of the New York Academy of Sciences, 654, 171–191.PubMedCrossRefGoogle Scholar
  57. Kumor, K, Sherer, M., and Jaffe, J. (1989). Effects of bromocriptine pretreatment on subjective and physiological responses to IV cocaine. Pharmacology, Biochemistry and Behavior, 33, 829–837.CrossRefGoogle Scholar
  58. Lamas, X., Negus, S. S., Hall, E., and Mello, N. K. (1995). Relationship between the discriminative stimulus effects and plasma concentrations of intramuscular cocaine in rhesus monkeys. Psychopharmacology, 121, 331–338.PubMedCrossRefGoogle Scholar
  59. Lau, C. E., Falk, J. L., and King, G. R. (1992). Oral cocaine self-administration: relation of locomotor activity to pharmacokinetics. Pharmacology, Biochemistry and Behavior, 43, 45–51.CrossRefGoogle Scholar
  60. Martin, W. R., Sloan, B. S., Sapira, J. D., and Jasinksi, D. R. (1971). Physiologic, subjective and behavioral effects of amphetamine, methamphetamine, ephedrine, phenmetrazine and methylphenidate in man. Clinical Pharmacology and Therapeutics, 12, 245–258.PubMedGoogle Scholar
  61. Mayersohn, M., and Perrier, D. (1978). Kinetics of pharmacologic response to cocaine. Research Communications in Chemistry, Pathology and Pharmacology, 22, 465–474.Google Scholar
  62. McKenna, M. L., and Ho, B. T. (1980). The role of dopamine in the discriminative stimulus properties of cocaine. Neuropharmacology, /9, 297–303.Google Scholar
  63. McNair, D. M., Lorr, M., and Droppleman, L. F. (1971). EITS manual for the profile of mood states. San Diego, CA: Educational and Industrial Testing Service.Google Scholar
  64. Meisch, R. A., and Stewart, R. B. (1995). Relative reinforcing effects of different doses of orally delivered cocaine. Drug and Alcohol Dependence, 37, 141–147.PubMedCrossRefGoogle Scholar
  65. Meisch, R. A., George, E R., and Lemaire, G. A. (1990). Orally delivered cocaine as a reinforcer for Rhesus monkeys. Pharmacology, Biochemistry and Behavior, 35, 245–249.CrossRefGoogle Scholar
  66. Mello, N. K., and Negus, S. S. (1996). Preclinical evaluation of pharmacotherapies for treatment of cocaine and opioid abuse using drug self-administration procedures. Neuropsychopharmacology, 14, 375–424.PubMedCrossRefGoogle Scholar
  67. Middleton, R. M., and Kirkpatrick, M. B. (1993). Clinical use of cocaine: A review of the risks and benefits. Drug Safety, 9, 212–217.PubMedCrossRefGoogle Scholar
  68. Musto, D. E (1992). Cocaine’s history, especially the American experience. In R. Bock and J. Whelan (Eds.), Cocaine: Scientific and social dimensions (Ciba Foundation Symposium, Vol. 166, pp. 7–14 ). New York: Wiley.Google Scholar
  69. National Household Survey on Drug Abuse. (1995). Population estimates 1994 (U.S. Department of Health and Human Services, Substance Abuse Mental Health Service Administration [SAMHSA], DHHS 95–3063 ). Washington, DC: U.S. Government Printing Office.Google Scholar
  70. Negrete, J. C. (1992). Cocaine problems in the coca-growing countries of South America. In R. Bock and J. Whelan (Eds.), Cocaine: Scientific and social dimensions (Ciba Foundation Symposium, Vol. 166, pp. 40–50 ). New York: Wiley.Google Scholar
  71. Oliveto, A., Rosen, M. I., Woods, S. W, and Kosten, T. R. (1995). Discriminative stimulus, self-reported and cardiovascular effects of orally administered cocaine in humans. Journal of Pharmacology and Experimental Therapeutics, 272, 231–241.PubMedGoogle Scholar
  72. Overton, D. A. (1987). Applications and limitations of the drug discrimination method for the study of drug abuse. In M. A. Bozarth (Ed.), Methods fir assessing the reinforcing properties of abused drugs (pp. 91–340 ). New York: Springer-Verlag.Google Scholar
  73. Perez-Reyes, M., Di Guiseppi, S., Ondrusek, G., Jeffcoat, A. R., and Cook, C. E. (1982). Free-base cocaine smoking. Clinical Pharmacology and Therapeutics, 32, 459–465.Google Scholar
  74. Petit, H. O., Ettenberg, A., Bloom, F. E., and Koob, G. E. (1984). Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology 84, 167–173.CrossRefGoogle Scholar
  75. Pickens, R., and Thompson, T. (1968). Cocaine-reinforced behavior in rats: Effects of reinforcement magnitude and fixed-ratio size. Journal of Pharmacology and Experimental Therapeutics, 161, 122–129.PubMedGoogle Scholar
  76. Preston, K. L., and Bigelow, G. E. (1991). Subjective and discriminative effects of drugs. Behavioural Pharmacology, 2, 293–313.PubMedCrossRefGoogle Scholar
  77. Preston, K. L., Sullivan, J. T., Strain, E. C., and Bigelow, G. E. (1992). Effects of cocaine alone and in combination with bromocriptine in human cocaine abusers. Journal of Pharmacology and Experimental Therapeutics, 262, 279–291.PubMedGoogle Scholar
  78. Preston, K. L., Sullivan, J. T., Berger, P. B., and Bigelow, G. E. (1993). Effects of cocaine alone and in combination with mazindol in human cocaine abusers. Journal of Pharmacology and Experimental Therapeutics, 267, 296–307.PubMedGoogle Scholar
  79. Preston, K. L., Walsh, S. L., and Sannerud, C. A. (1997). Measures of interoceptive stimulus effects: Relationship to drug reinforcement. In J. D. Roache and B. A. Johnson (Eds.), Drug addiction and its treatment: Nexus of neuroscience and behavior (pp. 91–114 ). Philadelphia: Lippincott-Raven.Google Scholar
  80. Resnick, R. B., Kestenbaum, R. S., and Schwartz, L. K. (1977). Acute systemic effects of cocaine in man: A controlled study by intranasal and intravenous routes. Science, 195, 696–699.PubMedCrossRefGoogle Scholar
  81. Ritz, M. C., Lamb, R. J., Goldberg, S. R., and Kuhar, M. J. (1987). Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science, 237, 1219–1223.PubMedCrossRefGoogle Scholar
  82. Roberts, D. C. S., Koob, G. F., Klonoff, P., and Fibiger, H. C. (1980). Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens. Pharmacology, Biochemistry and Behavior, 12, 781–787.CrossRefGoogle Scholar
  83. Rowbotham, M. C., Jones, R. T., Benowitz, N. L., and Jacob, P. (1984). Trazodone-oral cocaine interactions. Archives of General Psychiatry, 41, 895–899.PubMedCrossRefGoogle Scholar
  84. Sannerud, C. A., Kaminski, B. J., and Griffiths, R. R. (1996). Intravenous self-injection of four novel phenethylamines in baboons. Behavioural Pharmacology, 7, 315–323.PubMedCrossRefGoogle Scholar
  85. Scheel-Kruger, J., Braestrup, C., Nielson, M., Golembiowska, K., and Modilnicka, E. (1976). Cocaine: Discussion on the role of dopamine in the biochemical mechanism of action. In E. H. Ellinwood and M. M. Kilbey (Eds.), Cocaine and other stimulants (pp. 373–407). New York: Plenum.Google Scholar
  86. Schuster, C. R., and Johanson, C-E. (1988). Relationship between the discriminative stimulus properties and subjective effects of drugs. In F. C. Colpaert and R. L. Balster (Eds.), Transduction mechanisms of drug stimuli (pp. 161–175 ). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  87. Shannon, H. E., and Holtzman, S. G. (1979). Morphine training dose: A determinant of stimulus generalization to narcotic antagonists in the rat. Psychopharmacology, 61, 239–244.PubMedCrossRefGoogle Scholar
  88. Sharkey, J., Ritz, M. C., Sehenden, J. A., Hanson, R. C., and Kuhar, M. J. (1988). Cocaine inhibits muscarinic cholinergic receptors in heart and brain. Journal of Pharmacology and Experimental Therapeutics, 246, 1048–1052.PubMedGoogle Scholar
  89. Sherer, M. A. (1988). Intravenous cocaine: Psychiatric effects, biological mechanisms. Biological Psychiatry, 24, 865–885.PubMedCrossRefGoogle Scholar
  90. Spealman, R. D., Bergman, J., Madras, B. K., and Melia, K. F. (1991). Discriminative stimulus effects of cocaine in squirrel monkeys: Involvement of dopamine receptor subtypes. Journal of Pharmacology and Experimental Therapeutics, 258, 945–953.PubMedGoogle Scholar
  91. Stolerman, I. P. (1991). Measures of stimulus generalization in drug discrimination experiments. Behavioural Pharmacology, 2, 265–282.CrossRefGoogle Scholar
  92. Stolerman, I. P, and D’Mello, G. D. (1981). Role of training conditions in discrimination of central nervous system stimulants by rats. Psychopharmacology, 73, 295–303.PubMedCrossRefGoogle Scholar
  93. Tang, M., and Falk, J. L. (1987). Oral self-administration of cocaine: Chronic excessive intake by schedule induction. Pharmacology, Biochemistry and Behavior, 28, 517–519.CrossRefGoogle Scholar
  94. Terry, P., Witkin, J. M., and Katz, J. L. (1994). Pharmacological characterization of the novel discriminative stimulus effects of a low dose of cocaine. Journal of Pharmacology and Experimental Therapeutics, 270, 1041–1048.PubMedGoogle Scholar
  95. Van Dyke, C., and Byck, R. (1983). Cocaine use in man. In N. K. Mello (Ed.), Advances in substance abuse (Vol. 3, pp. 1–24 ). Greenwich, CT: JAI.Google Scholar
  96. Van Dyke, C., Jatlow, P, Ungerer, J., Barash, P. G., and Byck, R. (1978). Oral cocaine: Plasma concentrations and central effects. Science, 200, 211–213.PubMedCrossRefGoogle Scholar
  97. Walsh, S. L., Preston, K. L., Sullivan, J. T., Fromme, R., and Bigelow, G. E. (1994). Fluoxetine alters the effects of intravenous cocaine in humans. Journal of Clinical Psychopharmacology, 14, 396–407.PubMedGoogle Scholar
  98. Walsh, S. L., Sullivan, J. T., Preston, K. L., Garner, J. E., and Bigelow, G. E. (1996). The effects of naltrexone on response to intravenous cocaine, hydromorphone, and their combination in humans. Journal of Pharmacology and Experimental Therapeutics, 279, 524–538.PubMedGoogle Scholar
  99. Warner, E. A. (1993). Safety and risks of cocaine use. Annals of Internal Medicine, 119, 226–235.PubMedGoogle Scholar
  100. Wilson, M. C., and Schuster, C. R. (1972). The effects of chlorpromazine on psychomotor stimulant self-administration in the rhesus monkey. Psychopharmacologia, 26, 115–126.PubMedCrossRefGoogle Scholar
  101. Wilson, M. C., Hitomi, M., and Schuster, C. R. (1971). Psychomotor stimulant self-administration as a function of dosage per injection in the Rhesus monkey. Psvchopharmacologia, 22, 271–281.CrossRefGoogle Scholar
  102. Witkin, J. M., Nichols, D. E., Terry, P., and Katz, J. L. (1991). Behavioral effects of selective dopaminergic compounds in rats discriminating cocaine injections. Journal of Pharmacology and Experimental Therapeutics, 257, 706–713.PubMedGoogle Scholar
  103. Wood, D. M., and Emmett-Oglesby, M. W. (1988). Substitution and cross-tolerance profiles of anorectic drugs in rats trained to detect the discriminative stimulus properties of cocaine. Psychopharmacology, 95, 364–368.PubMedCrossRefGoogle Scholar
  104. Wood, D. M., Retz, K. C., and Emmett-Oglesby, M. W. (1987). Evidence of a central mechanism mediating tolerance to the discriminative stimulus properties of cocaine. Pharmacology Biochemistry and Behavior, 28, 401–406.CrossRefGoogle Scholar
  105. Woods, J., and Schuster, C. R. (1968). Reinforcement properties of morphine, cocaine and SPA as a function of unit dose. International Journal of the Addictions, 3, 231–237.Google Scholar
  106. Woolverton, W. L. (1992). Determinants of cocaine self-administration by laboratory animals. In R. Bock and J. Whelan (Eds.), Cocaine: Scientific and social dimensions (Ciba Foundation Symposium, Vol. 166, pp. 96 - I11 ). New York: Wiley.Google Scholar
  107. Woolverton, W. L., and Schuster, C. R. (1983). Intragastric self-administration in rhesus monkeys under limited access conditions: Methodological studies. Journal of Pharmacological Methods, 10, 93–106.PubMedCrossRefGoogle Scholar
  108. Woolverton, W. L., and Trost, R. C. (1978). Cocaine as a discriminative stimulus for responding maintained by food in squirrel monkeys. Pharmacology, Biochemistry and Behavior, 8, 627–630.CrossRefGoogle Scholar
  109. Young, A. M. (1991). Discriminative stimulus profiles of psychoactive drugs. In N. K. Mello (Ed.), Advances in substance abuse (Vol. 4, pp. 139–203 ). London: Jessica Kingsley.Google Scholar
  110. Young, R., and Glennon, R. A. (1993). Cocaine-stimulus generalization to two new designer drugs: Methcathinone and 4-methylaminorex. Pharmacology, Biochemistry and Behavior; 45, 229–231.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Sharon L. Walsh
    • 1
  1. 1.Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations