The “Push-Pull Mechanism”

Protection against Site-Specific and Transition Metal-Mediated Damage
  • Mordechai Chevion
  • Ben-Zhan Zhu
  • Eduard Berenshtein
Chapter
Part of the NATO ASI Series book series (NSSA, volume 296)

Abstract

Molecular oxygen (O2) probably appeared on the Earth’s surface about 2 × 109 years ago as a result of photosynthetic microorganisms acquiring the ability to split water. Oxygen is now the most abundant element in the biosphere. Its concentration in dry air has risen to 21%. Iron is the second most abundant metal in the Earth’s crust whereas copper is more scarce.

Keywords

Free Radical Reperfusion Injury Xanthine Oxidase Coronary Flow Metal Binding Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, K., Sharma, A. and Talukder, G., 1989, Effects of copper on mammalian cell components, Chem.-Biol. Interact. 69: 1–16.CrossRefGoogle Scholar
  2. Anbar, M. and Levitzki, B., 1966, Copper-induced radiolytic deactivation of cc-amylase and catalase, Rad. Res. 27: 32–34.CrossRefGoogle Scholar
  3. Appelbaum, Y. J., Kuvin, J., Chevion, M. and Uretzky, G., 1988, TPEN, a heavy metal chelator, protected the isolated perfused rat heart from reperfusion induced arrhythmias, J Mol. Cell. Cardiol. 20 (Supp V):Abstract #32.Google Scholar
  4. Appelbaum, Y. J., Kuvin, J., Borman, J. B., Uretzky, G. and Chevion, M., 1990, The protective role of neocuproine against cardiac damage in isolated perfused rat heart, Free Rad. Biol. Med. 8: 133–143.CrossRefGoogle Scholar
  5. Aronovitch, J., Samuni, A., Godinger, D. and Czapski, G., 1986, In vivo degradation of bacterial DNA by H2O2 and O-phenanthroline, In: Rotilio G. ed. Superoxide and Superoxide Dismutase in Chemistry, Biology and Medicine. New York, Elsevier. 346–348.Google Scholar
  6. Arroyo, C., Kramer, J., Dickens, B. and Weglicki, W., 1987, Identification of free radicals in myocardial ischemia/reperfusion by spin trapping with nitrone DMPO, FEBS Lett. 221: 101–104.CrossRefGoogle Scholar
  7. Aruoma, O., Kaur, H. and Halliwell, B., 1991, Oxygen free radicals in human diseases, J. R. Soc. Health. 111: 172–177.CrossRefGoogle Scholar
  8. Aust, S. D., Morehouse, L. A. and Thomas, C. E., 1985, Role of metals in oxygen radical reaction, Free Rad. Biol. Med. 1: 3–25.CrossRefGoogle Scholar
  9. Ayene, I. S., Dodia, C. and Fisher, A. B., 1992, Role of oxygen in oxidation of lipid and protein during ischemia/reperfusion in isolated perfused rat lung, Arch. Biochem. Biophys. 296: 183–189.CrossRefGoogle Scholar
  10. Basoglu, A., Kocak, H., Pac, M., Cerrahogly, M., Bakan, N., Yekeler, I., Yuksek, M. S. and Goksu, S., 1992, Oxygen free radical scavengers and reperfusion injury in dog lung preserved in cold ischemia, Thorac. Cardiovasc. Surg. 40: 144–147.CrossRefGoogle Scholar
  11. Beauchamp, C. and Fridovich, I., 1970, A mechanism of the production of ethylene from ethanol, J. Biol. Chem. 245: 4641–4646.Google Scholar
  12. Beinert, H., 1991, Copper in Biological Systems, A Report from “The 6th Manziana Conference”. September 23–27. J. Inorg. Biochem. 44: 173–218.CrossRefGoogle Scholar
  13. Berenshtein, E., Banin, E., Pe’er, J., Kitrossky, N. and Chevion, M., 1996, Ga/DFO protect retina against reperfusion injury, VIII Biennial Meeting International Society for Free Radical Research, Barcelona, Spain. p. 157.Google Scholar
  14. Bernier, M., Hearse, D. J. and Manning, A. S., 1986, Reperfusion-induced arrhythmias and oxygen-derived free radicals. Studies with “anti-free radical” interventions and a free radical-generating system in the isolated perfused rat heart, Circ. Res. 58: 331–340.CrossRefGoogle Scholar
  15. Birnboim, H. C., 1982, DNA strand breakage in human leukocytes exposed to a tumor promoter, phorbol-myristate acetate, Science 215: 1247–1249.CrossRefGoogle Scholar
  16. Birnboim, H. C., 1992, Effect of lipophilic chelators on oxyradical-induced DNA strand breaks in human granulocytes: Paradoxical effect of 1,10-phenanthroline, Arch. Biochem. Biophys. 294: 17–21.CrossRefGoogle Scholar
  17. Borg, D. C., Schaich, K. M., Elmore, J. J. and Bell, J. A., 1978, Cytotoxic reaction of free radical species of oxygen, Photochem. Photobiol. 28: 887–907.CrossRefGoogle Scholar
  18. Borg, D. C. and Schaich, K. M. 1984, Cytotoxicity from coupled redox cycling of autoxidizing xenobiotics and metals, Israel J. Chem. 24: 38–53.Google Scholar
  19. Breuer, W., Epsztein, S., Milligram, P. and Cabantchik, Z. I., 1995, Transport of iron and other transition metals into cells revealed by a fluorescent probe, Am. J. Physiol. 268: C1354–61.Google Scholar
  20. Breuer, W., Epsztein, S. and Cabantchik, Z. I., 1996, Dynamics of the cytosolic chelatable iron pool of K562 cells, FEBS Lett. 382: 304–308.CrossRefGoogle Scholar
  21. Bryan, S. E., Vizard, D. L., Beary, D. A., La Biche, R. A. and Hardy, K. J., 1981, Partitioning of zinc and copper within subnuclear nucleoprotein particles, Nucleic Acid Res. 9: 5811–5823.CrossRefGoogle Scholar
  22. Buettner, G. R., Oberley, L. W. and Leuthauser, S. W. H. C., 1978, The effect of iron on the distribution of superoxide and hydroxyl radicals as seen by spin trapping and on the superoxide dismutase assay. Photochem, Photobiol. 28: 693–695.CrossRefGoogle Scholar
  23. Bulkley, J. B. 1993, Endothelial xanthine oxidase: A radical transducer of inflammatory signals for reticuloendothelial activation, Br. J. Surg. 80: 684–686.CrossRefGoogle Scholar
  24. Cabantchik, Z. I., Glickstein, H., Milgram, P. and Breuer, W., 1996, A fluorescence assay for assessing chelation of intracellular iron in a membrane model system and in mammalian cells, Anal. Biochem. 233: 221–227.CrossRefGoogle Scholar
  25. Cadenas, E., 1989, Biochemistry of oxygen toxicity, Ann. Rev. Biochem. 58: 79–110.CrossRefGoogle Scholar
  26. Cao, W., Carney, J. M., Duchon, A., Floyd, R. A. and Chevion, M., 1988, Oxygen free radical involvement in ischemia and reperfusion injury to brain, Neurosci. Lett. 88: 233–238.CrossRefGoogle Scholar
  27. Chevion, M., 1988, A site specific mechanism for free radical induced biological damage: The essential role of redox-active transition metals, Free Rad. Biol. Med. 5: 27–37.CrossRefGoogle Scholar
  28. Chevion, M., 1991, Protection against free radical-induced and transition metal-mediated damage: The use of “pull” and “push” mechanisms, Free Rad. Res. Comms. 12–13: 691–696.CrossRefGoogle Scholar
  29. Chevion, M., Jiang, Y., Har-El, R., Berenshtein, E., Uretzky, G. and Kitrossky, N., 1993, Copper and iron are mobilized following myocardial ischemia: Possible criteria for tissue injury, Proc. Natl. Acad. Sci. USA 90: 1102–1106.CrossRefGoogle Scholar
  30. Czapski, G. and Ilan, Y. A., 1978, On the generation of the hydroxyl agent from the superoxide radical: Can the Haber-Weiss reaction be the source of OH radicals?, Photochem. Photobiol. 28: 651–654.CrossRefGoogle Scholar
  31. Czapski, G., 1984, On the use of OH scavengers in biological systems, Israel J. Chem. 24: 29–32.Google Scholar
  32. Darley-Usmar, V. M., Hersey, A. and Garland, L. G., 1989, A method for comparative assessment of antioxidant as peroxyl radical scavengers, Biochem. Pharmocol. 38: 1645–1649.CrossRefGoogle Scholar
  33. Das, D. K., 1993, Pathophysiology of reperfusion injury, CRC Press. Boca Raton, FL.Google Scholar
  34. DeBoer, D. A. and Clark, R. E., 1992, Iron chelation in myocardial preservation after ischemia-reperfusion injury: The importance of pretreatment and toxicity, Ann. Thorac. Surg. 53: 412–418.CrossRefGoogle Scholar
  35. Denicola, A., Souza, J. M., Gatti, R. M., Augusto, O. and Radi R., 1995, Desferrioxamine inhibition of the hydroxyl radical-like reactivity of peroxynitrite: Role of hydroxamic groups, Free Rad. Biol. Med. 19: 11–19.CrossRefGoogle Scholar
  36. Eaton, J. W., 1996, Iron: The essential poison, Redox Report 2: 215.Google Scholar
  37. Emerit, I. and Cerutti, P., 1981, Tumor promoter phorbol-12-myristate-13-acetate induces chromosomal damage via indirect action, Nature 293: 144–146.CrossRefGoogle Scholar
  38. Ferradini, C., Foos, J. and Houee, C., 1978 ), The reaction between superoxide anion and hydrogen peroxide, Photochem. Photobiol. 28: 697–700.CrossRefGoogle Scholar
  39. Ferreira, R., Burgos, M., Milei, J., Llesuy, S., Molteni, L., Hourquebie, H. and Boveris, A., 1990, Effect of supplementing cardioplegic solution with deferoxamine on reperfused human myocardium, J. Thorac. Cardiovasc. Surg. 100: 708–714.Google Scholar
  40. Frank, L. and Massaro, D., 1980, Oxygen toxicity, Am. J. Med. 69: 117–126.CrossRefGoogle Scholar
  41. Fried!, H. P., Till, G. O., Ryan, U. S. and Ward, P. A., 1989, Mediator-induced activation of xanthine oxidase in endothelial cells, FASEB J. 3: 2512–2518.Google Scholar
  42. Gabutti, V. and Piga, A., 1996, Results of long-term iron-chelating therapy, Acta Haematol. 95: 26–36.CrossRefGoogle Scholar
  43. Gamelin, L. M. and Zager, R. A., 1988, Evidence against oxidant injury as a critical mediator of postischemic acute renal failure, Am. J. Physiol. 255: F450–460.Google Scholar
  44. Garlick, P. B., Davies, M. J., Hearse, M. J. and Slater, T. F., 1987, Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy, Circ. Res. 61: 757–760.CrossRefGoogle Scholar
  45. Gehbach, P. L. and Purple, R. L., 1994, Enhancement of retinal recovery by conjugated deferoxamine after ischemia-reperfusion, Invest. Ophthalm. Vis. Sci. 35 (2): 669–676.Google Scholar
  46. Geierstanger, B. H., Kagawa, T. F., Chen, S. L., Quigley, G. T. and Ho, P. S., 1991, Base-specific binding of copper(II) to Z-DNA: The 1.3 A single crystal structure of d(m5CGUAm5CG) in the presence of CuCl2, J. Biol. Chem. 266: 20185–20191.Google Scholar
  47. Gerschman, R., Gilbert, D., Nye, S. W., Dwyer, P. and Fenn, W. O., 1954, Oxygen poisoning and X-irradiation: A mechanism in common, Science 119: 623–626.CrossRefGoogle Scholar
  48. Gerschman, R., 1981, Historical introduction to the “free radical theory” of oxygen toxicity, In: Gilbert, D., ed. Oxygen and Living Processes, an Interdisplinary Approach. New York, Springer Verlag. 44–46.Google Scholar
  49. Goldstein, S. and Czapski, G., 1986, The role and mechanism of metal ions and their complexes in enhancing damage in biological systems or in protecting these systems from the toxicity of OZ, Free Rad. Biol. Med. 2: 3–11.Google Scholar
  50. Goldstein, S., Meyerstein, D. and Czapski, G., 1993, The Fenton reagents, Free Rad. Biol. Med. 15: 435–445.CrossRefGoogle Scholar
  51. Gottlieb, R. A., Burleson, K. O. and Cloner, R. A., 1994, Reperfusion injury induced apoptosis in rabbit cardiomyocytes, J. Clin. Invest. 94: 1621–1628.CrossRefGoogle Scholar
  52. Gower, J., Healing, G. and Green, C., 1989, Measurement by HPLC of desferrioxamine-available iron in rabbit kidneys to assess the effect of ischemia on the distribution of iron within the total pool, Free Rad. Res. Commun. 5: 291–299.CrossRefGoogle Scholar
  53. Graf, E., Mahoney, J. R., Bryant, R. G. and Eaton, J. W., 1984, Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site, J. Biol. Chem. 259: 3620–3624.Google Scholar
  54. Granger, D. N., Rutili, G. and McCord, J. M., 1981, Superoxide radical in feline intestinal ischemia, Gastroenterology 81: 22–29.Google Scholar
  55. Green, E. S. R., Rice-Evans, H., Rice-Evans, P., Davies, M. J., Salah, N and Rice-Evans, C. A., 1993, The efficacy of mono-hydroxamates as free radical scavenging agents compared with di-and tri-hydroxamates, Biochem. Pharmacol. 45: 357–366.CrossRefGoogle Scholar
  56. Gutteridge, J. M. C., Richmond, R. and Halliwell, B., 1979, Inhibition of the iron-catalyzed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine, Biochem. J. 184: 469–472.Google Scholar
  57. Gutteridge, J. M. C. and Wilkins, S., 1983, Copper salt-dependent hydroxyl radical formation damage to proteins acting as antioxidants, Biochim. Biophys. Acta 759: 38–41.CrossRefGoogle Scholar
  58. Haber, F. and Weiss, J., 1934, The catalytic decomposition of hydrogen peroxide by iron salts, Proc. R. Soc. London Sec. A. 147: 332–351.CrossRefGoogle Scholar
  59. Halliwell, B., 1978, Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates, FEBS Lett. 92: 321–326.CrossRefGoogle Scholar
  60. Halliwell, B. and Gutteridge, J. M. C., 1984, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem. J. 219: 1–14.Google Scholar
  61. Halliwell, B. and Gutteridge, J. M. C., 1985, The importance of free radicals and catalytic metal ions in human disease, Mol. Aspects Med. 8: 89–193.CrossRefGoogle Scholar
  62. Halliwell, B. and Gutteridge, J. M. C., 1989, Free Radicals in Biology and Medicine, London, Clarendon Press.Google Scholar
  63. Halliwell, B., 1989, Protection against tissue damage in vivo by desferrioxamine: What is its mechanism of action?, Free Rad. Biol. Med. 7: 645–651.CrossRefGoogle Scholar
  64. Halliwell, B., 1990, How to characterize a biological antioxidant, Free Rad. Res. Commun. 9: 1–32.CrossRefGoogle Scholar
  65. Halliwell, B. and Gutteridge, J. M. C., 1990, Role of free radicals and catalytic metal ions in human diseases: An overview, Methods Enzymol. 186: 1–85.CrossRefGoogle Scholar
  66. Halliwell, B., Gutteridge, J. M. and Cross, C. E., 1992, Free radicals, antioxidants, and human disease: Where are we now?, J. Lab. Clin. Med. 119: 598–620.Google Scholar
  67. Har-El, R. and Chevion, M., 1989, Zn(II) protect againfree radical-induced damage: Studies on single and double-strand DNA breakage, Free Rad. Res. Comms. 12–13: 509–515.Google Scholar
  68. Hearse, D. J., Manning, A. S., Downey, J. M. and Yellon, D. M., 1986, Xanthine oxidase: A critical mediator of myocardial injury during ischemia and reperfusion? Acta Physiol. Scand. Suppl. 548: 65–78.Google Scholar
  69. Herbert, V., Shaw, S. and Jayatilleke, E., 1996, Vitamin C-driven free radical generation from iron, J. Nutri. 126: 1213S - 12205.Google Scholar
  70. Hershko, C., Pinson, A. and Link, G., 1996, Prevention of anthracycline cardiotoxicity by iron chelation, Acta Haematol. 95: 87–92.CrossRefGoogle Scholar
  71. Holt, S., Gunderson, M., Joyce, K., Nayini, N. R., Eyster, G. F., Garitano, A. M., Zonia, C., Krause, G. S., Aust, S. D. and White, B. C., 198, Myocardial tissue iron delocalization and evidence for lipid peroxidation after two hours of ischemia, Ann. Emerg. Med. 15: 1155–1159.Google Scholar
  72. Howell, J. M. and Gawthorne, J. M., 1987, Copper on Animal and Man. Boca Raton, Florida, CRC Press.Google Scholar
  73. Imlay, J. A., Chin, S. M. and Linn, S., 1988, Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro, Science 240: 640–642.CrossRefGoogle Scholar
  74. Karwatowska-Prokopczuk, E., Czarnowska, E. and Beresewicz, A., 1992, Iron availability and free radical induced injury in the isolated ischemic/reperfused rat heart, Cardiovasc. Res. 26: 58–66.CrossRefGoogle Scholar
  75. Kinnula, V. I., Crapo, J. D. and Raivio, K. 0., 1995, Biology of disease. General and disposal of reactive oxygen metabolites in the lung, Lab Invest. 73 (1): 3–19.Google Scholar
  76. Kohen, R. and Chevion, M., 1985, Paraquat toxicity is enhanced by iron and inhibited by desferrioxamine in laboratory mice, Biochem. Pharmacol. 34: 1841–1843.CrossRefGoogle Scholar
  77. Kohen, R. and Chevion, M., 1986, Transition metals potentiate paraquat toxicity, Free Rad. Res. Commun. 1: 79–88.CrossRefGoogle Scholar
  78. Kohen, R., Szyf, M. and Chevion, M., 1986, Quantitation of single and double strand DNA breaks in vitro and in vivo, Anal. Biochem. 154: 485–491.CrossRefGoogle Scholar
  79. Koppenol, W. H., Butler, J. and Leenwen, J. W. V., 1978, The Haber-Weiss cycle, Photochem. Photobiol. 28: 655–660.CrossRefGoogle Scholar
  80. Koppenol, W. H. and Butler, J., 1985, Energetics in interconversion reactions of oxyradicals, Adv. Free Rad. Biol. 1: 91–131.CrossRefGoogle Scholar
  81. Korbashi, P., Katzhendler, J. Saltman, P. and Chevion, M., 1989, Zinc protects Escherichia coli against copper-mediated paraquat-induced damage, J. Biol. Chem. 264: 8479–8482.Google Scholar
  82. Li, Y. and Trush, M. A., 1993a, Oxidation of hydroquinone by copper: Chemical mechanism and biological effects, Arch. Biochem. Biophys. 300: 346–355.CrossRefGoogle Scholar
  83. Li, Y. and Trush, M. A.,, 1993b, DNA damage resulting from the oxidation of hydroquinone by copper: Role for a Cu(II)/Cu(I) redox cycle and reactive oxygen generation, Carcinogenesis 14: 1303–1311.CrossRefGoogle Scholar
  84. Li, Y. and Trush, M. A., 1994, Reactive oxygen-dependent DNA damage resulting from the oxidation of phenolic compounds by a copper-redox cycle mechanism, Cancer Res. 54: 1895–1898.Google Scholar
  85. Linder, M. C., 1991, Biochemistry of Copper. Plenum Press, New York.Google Scholar
  86. Manson, P. N., Antheneli, R. N., Jim, M., Bulkley, G. B. and Hoopes, J. E., 1983, The role of oxygen-free radicals in ischemic tissue injury in island skin flaps, Ann. Surg. 198: 87–90.CrossRefGoogle Scholar
  87. Marx, G. and Chevion, M., 1986, Site-specific modification of albumin by free radicals, Biochem. J. 236: 397–400.Google Scholar
  88. Marx, J. J. M. and Van Asbeck, B. S., 1996, Use of iron chelators in preventing Hydroxyl radical Damage: Adult respiratory distress syndrome as an experimental model for the pathophysiology and treatment of oxygen-radical-mediated tissue damage, Acta Haematol. 95: 49–62.CrossRefGoogle Scholar
  89. Mayers, C. L., Weiss, S. J., Krish, M. M. and Shlafer, M., 1985, Involvement of hydrogen peroxide and hydroxyl radical in the oxygen paradox: Reduction of creatine kinase release by catalane, allopurinol or deferoxamine, but not by superoxide dismutase, J. Mol. Cell. Cardiol. 17: 675–684.CrossRefGoogle Scholar
  90. McCord, J. M. and Fridovich, I., 1969, Superoxide dismutase: An enzyme function for erythrocytes, J. Biol. Chem. 244: 6049–6055.Google Scholar
  91. McCord, J. M. and Day, E. D., 1978, Superoxide-dependent production of hydroxyl radical catalyzed by. iron-EDTA complex, FEBS Lett. 86: 139–143.CrossRefGoogle Scholar
  92. McCord, J. M., 1985, Oxygen-derived free radicals in postischemic tissue injury, N. Engl. J. Med. 312: 159–163.CrossRefGoogle Scholar
  93. Mello Filho, A. C. D. and Meneghini, R., 1985, Protection of mammalian cells by O-phenanthroline from lethal and DNA-damaging effects produced by active oxygen species, Biochim. Biophys. Acta 847: 82–89.CrossRefGoogle Scholar
  94. Menasche, P., Pasquier, C., Bellucci, S., Lorente, P., Jaillon, P. and Piwnica, A., 1988, Deferoxamine reduced neutrophil mediated free radical production during cardiopulmonary bypass in man, J. Thorac. Cardiovasc. Surg. 96: 582–589.Google Scholar
  95. Nayak, M. S., Kita, M. and Marmor, M. F., 1993, Protection of the rabbit retina from ischemic injury by superoxide dismutase and catalase, Invest. Ophthalmol. Vis. Sci. 34: 2018–2022.Google Scholar
  96. Nayini, N. R., White, B. C., Aust, S. D., Huang, R. R., Indrieri, R. J., Evans, A. T., Bialek, H., Jacobs, W. A. and Komara, J., 1985, Post resuscitation iron delocalization and malondialdehyde production in the brain following prolonged cardiac arrest, J. Free Rad. Biol. Med. 1: 111–116.CrossRefGoogle Scholar
  97. Nohl, H. and Jordan, W., 1987, The involvement of biological quinones in the formation of hydroxyl radicals via the Haber-Weiss reaction, Biorg. Chem. 15: 374–382.CrossRefGoogle Scholar
  98. Nohl, H., Stolze, K., Napetschnig, S. and Ishikawa, T., 1991, Is oxidative stress primarily involved in reperfusion injury of the ischemic heart? Free Rad. Biol. Med. 11: 581–588.CrossRefGoogle Scholar
  99. O’Halloran, T. V., 1993, Transition metals in control of gene expression, Science 261: 715–725.CrossRefGoogle Scholar
  100. Oberhammer, F. A., Pavalka, M. and Sharma, S., 1992, Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor bl, Proc. Natl. Acad. Sci. USA 89: 5408–5412.CrossRefGoogle Scholar
  101. Ophir, A., Berenshtein, E., Kitrossky, N., Berman, E. R., Photiou, S., Rothman, Z. and Chevion, M., 1993, Hydroxyl radical generation in the cat retina during reperfusion following ischemia, Exp. Eye Res. 57: 351–357.CrossRefGoogle Scholar
  102. Ophir, A., Berenshtein, E., Kitrossky, N., and Averbukh, E., 1994, Protection of the transiently ischemic cat retina by zinc-desferrioxamine. Invest. Ophthalmol, Vis. Sci. 35: 1212–1222.Google Scholar
  103. Opie, L. H., 1989, Reperfusion injury and its pharmacological modification, Circulation. 80: 1049–1062.CrossRefGoogle Scholar
  104. Pezzano, H. and Podo, F., 1980 ), Structure of binary complexes of mono-and polynucleotides with metal ions of the first transition group, Chem. Rev. 80: 365–399.CrossRefGoogle Scholar
  105. Powell, S., Saltmann, P., Uretzky, G. and Chevion, M., 1990, The effect of zinc on reperfusion arrythmias in the isolated perfused rat heart, Free Rad. Biol. Med. 8: 33–46.CrossRefGoogle Scholar
  106. Powell, S. R., Hall, D. and Shih, A., 1991, Copper loading of hearts increases postischemic reperfusion injury, Circ. Res. 69: 881–885.CrossRefGoogle Scholar
  107. Priestly, J., 1906, The discovery of oxygen, Chicago, Chicago Press, University of Chicago.Google Scholar
  108. Prutz, W. A., Butler, J. and Land, E. J., 1990, Interaction of Cu(I) with nucleic acids, Int. J. Radial. Biol. 58: 215–234.CrossRefGoogle Scholar
  109. Rao, G. S., 1991, Release of 2-thiobarbituric acid reactive products from glutamate., deoxypuridine or DNA dur-ing autoxidation of dopamine in the presence of copper ions, Pharmacol. Toxicol. 69: 164–166.CrossRefGoogle Scholar
  110. Rice-Evans, C. A. and Diplock A. T., 1993, Current status of antioxidant therapy, Free Rad. Biol. Med. 15: 77–96.CrossRefGoogle Scholar
  111. Rumyantseva, G. V., Kennedy, C. H. and Mason, R. P., 1991, Trace transition metal-catalyzed reactions in the microsomal metabolism of alkyl hydrazines to carbon-centered free radicals, J. Biol. Chem. 266: 21422–21427.Google Scholar
  112. Samuni, A., Kalkstein, A. and Czapski, G., 1980, Does oxygen enhance the radiation-induced inactivation of penicillinase? Rad. Res. 82: 65–70.CrossRefGoogle Scholar
  113. Samuni, A., Chevion, M. and Czapski, G., 1981, Unusual copper-induced sensitization of the biological damages due to superoxide radicals, J. Biol. Chem. 256: 12632–12635.Google Scholar
  114. Samuni, A., Aronovitch, J., Godinger, D., Chevion, M. and Czapski, G., 1983, On the cytotoxicity of vitamin C and metal ions: A site-specific Fenton mechanism, Eur. J. Biochem. 137: 119–124.CrossRefGoogle Scholar
  115. Samuni, A., Chevion, M. and Czapski, G., 1984, Roles of copper and 02 in the radiation induced inactivation of T7 bacteriophage, Rad. Res. 99: 562–572.CrossRefGoogle Scholar
  116. Shinar, E., Navok, T. and Chevion, M., 1983, The analogous mechanisms of enzymatic inactivation induced by ascorbate and superoxide in the presence of copper, J. Biol. Chem. 258: 14778–14783.Google Scholar
  117. Shlafer, M., Brosamer, K., Forder, J. R., Simon, R. H., Ward, P. A. and Grum C. M., 1990, Cerium chloride as a histochemical marker of hydrogen peroxide in reperfused ischemic hearts, J. Mol. Cell. Cardio!. 22: 83–97.CrossRefGoogle Scholar
  118. Stadtman, E. R., 1990, Metal ion-catalyzed oxidation of proteins: Biochemical mechanism and biological conse-quences, Free Rad. Biol. Med. 9: 315–325.CrossRefGoogle Scholar
  119. Swauger, J. E., Dolan, P. M., Zweier, J. L., Kuppusamy, R. and Kensler, T. W., 1991, Role of benzoyoxyl radical in DNA damage mediated by benzoyl peroxide, Chem. Res. Toxicol. 4: 233–228.CrossRefGoogle Scholar
  120. Szabo, M. E., Dray-Lefaix, M. T., Doly, M. and Braquest, P., 199la, Free radical-mediated effects in reperfusion injury: A histologic study with SOD and EGB761 in rat retina, Ophthalmic. Res. 23: 225–234.Google Scholar
  121. Szabo, M. E., Dray-Lefaix, M. T., Doly, M., Carre, C. and Braquest, P., 199 lb, Ischemia and reperfusion-induced histologic changes in the rat retina, Invest. Ophthalmol. Vis. Sci. 32: 1471–1478.Google Scholar
  122. Vandeplassche, G., Hermans, C., Thone, F. and Borgers, M., 1989, Mitochondrial hydrogen peroxide generation by NADH-oxidase activity following regional myocardial ischemia in the dog, J. Mol. Cell. Cardiol. 21: 383–392.CrossRefGoogle Scholar
  123. Van Reyk, D. M. and Dean, R. T., 1996, The iron-selective chelator desferal can reduce chelated copper, Free Rad. Res. 24: 55–60.CrossRefGoogle Scholar
  124. Voogd, A., Sluiter, W., Eijk, H. G. v. and Koster, J. F., 1992, Low molecular weight iron and the oxygen paradox in isolated rat hearts, J. Clin. Invest. 90: 2050–2055.CrossRefGoogle Scholar
  125. Voogd, A., Sluiter, W. and Koster, J. F., 1994, The increased susceptibility to hydrogen peroxide of the (post-) ischemic rat heart is associated with the magnitude of the low molecular weight iron pool, Free Rad. Biol. Med. 16: 453–458.CrossRefGoogle Scholar
  126. Wacker, W. E. C. and Vallee, B. L., 1959, Nucleic acids and metals, J. Biol. Chem. 234: 3257–3262.Google Scholar
  127. Walling, C., 1982, The nature of the primary oxidants in oxidation mediated by metal ions, In: King, T. E., Mason, H. S., Morrison, M., eds. Oxidase and Related Redox Systems. Oxford, Perganon Press. 85–97.Google Scholar
  128. Weight, S. C., Bell, P. R. F. and Nicholson, M. L., 1996, Renal ischemia-reperfusion injury, Br. J. Surgery 83: 162–170.CrossRefGoogle Scholar
  129. Yamamoto, K. and Kawanishi, S., 1989, Hydroxyl free radical is not the main active species in site-specific DNA damage induced by copper (II) ion and hydrogen peroxide, J. Biol. Chem. 264: 15435–15440.Google Scholar
  130. Yourtee, D. M., Elkins, L. L., Nalvarte, E. L. and Smith, R. E., 1992, Amplification of doxorubicin mutagenicity by cupric ion, Toxicol. Appl. Pharmacol. 116: 57–65.CrossRefGoogle Scholar
  131. Zhu, B. Z., Har-El, R., Kitrossky, N. and Chevion, M., 1997, New modes of action of desferrioxamine: Scavenging of semiquinone radical and stimulation of hydrolysis of tetrachlorohydroquinone, Free Rad. Biol. Med. in press.Google Scholar
  132. Zweier, J. L., Flaherty, J. T. and Weisfeldt, M. L., 1987. Direct measurement of free radicals generation following reperfusion of ischemic myocardium. Proc. Natl. Acad. Sci. USA 84: 1404–1407.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Mordechai Chevion
    • 1
    • 2
  • Ben-Zhan Zhu
    • 1
  • Eduard Berenshtein
    • 1
    • 2
  1. 1.Department of Cellular BiochemistryHebrew University Hadassah Schools of Medicine and Dental MedicineJerusalemIsrael
  2. 2.Hebrew University — Hadassah Medical SchoolJerusalemIsrael

Personalised recommendations