Pathophysiology of Cerebral Ischemia

Mechanisms Involved in Neuronal Damage
  • Tomris Özben
Chapter
Part of the NATO ASI Series book series (NSSA, volume 296)

Abstract

Stroke is a common and devastating neurological disorder (Scatton, 1994) which is the third leading cause of death in major industrialized countries and also a major cause of long-lasting disability. Cerebral ischemia is always vascular origin and can be divided into haemorrhagic and thromboembolic, with the latter accounting for approximately 90% of strokes (Scatton, 1994) and results from embolic or thrombotic occlusion of the major cerebral arteries, most often the middle cerebral artery.

Keywords

Nitric Oxide NMDA Receptor Cerebral Ischemia Middle Cerebral Artery Occlusion Xanthine Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. E., and Meyer, F. B., 1996, Nitric oxide synthase inhibition by L-NAME during repetitive focal cerebral ischemia in rabbits, Am. J. Physiol. 271 (2 Pt 2): H588 - H594.Google Scholar
  2. Anile, C., Maira, G., Iannone, M., Corte, F. D., Mangiola, A., and Nistico, G., 1993, Role of nitric oxide in the regulation of cerebral blood flow under normal conditions and in brain ischaemia in pigs, in Nitric Oxide: Brain and Immune System, ( S. Moncada, G. Nistico, and E. A. Higgs, eds.), pp. 143–149, Portland Press, London.Google Scholar
  3. Archer, S., 1993, Measurement of nitric oxide in biological models, FASEB J. 7: 349–360.Google Scholar
  4. Baker, C. J., Fiore, A. J., Frazzini, V. I., Choudhri, T. F., Zubay, G. P., and Solomon, R. A., 1995, Intraischemic hypothermia decreases the release of glutamate in the cores of permanent focal cerebral infarcts, Neurosurgery, 36 (5): 994–1001.CrossRefGoogle Scholar
  5. Balkan, E., Balkan, S., Özben, T., Serteser, M., Gümü.5lü, S., and Oguz, N., 1997a, The effects of nitric oxide synthase inhibitor, L-NAME on NO production during focal cerebral ischemia in rats: could L-NAME be the future treatment of sudden deafness?, Inter. J. Neuroscience 89: 61–67.Google Scholar
  6. Balkan, S., Özben, T., Balkan, E., Oguz, N., Serteser, M., and GümiVü, S., 1997b, Effects of Lamotrigine on brain nitrite and cGMP levels during focal cerebral ischemia in rats, Acta Neural. Scand. 95: 140–146.CrossRefGoogle Scholar
  7. Beckman, J. S., 1991, The double-edged role of nitric oxide in brain function and superoxide-mediated injury, Dey. Physiol. 15 (1): 53–59.Google Scholar
  8. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A., 1990, Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide, Proc. Natl. Acad. Sci., USA 87: 1620–1624.Google Scholar
  9. Beckman, J. S., and Koppenol, W., 1992, Why is the half-life of nitric oxide so short?, in: The Biology of Nitric Oxide, Enzymology, Biochemistry, and Immunology, ( S. Moncada, M. A. Marietta, J. B. Hibbs, and E. A. Higgs, eds.), pp. 131, Portland Press, London.Google Scholar
  10. Betz, A. L., Schielke, G. P., and Yang, G. Y., 1996, Interleukin-1 in cerebral ischemia, Keio J. Med. 45 (3): 230–237.CrossRefGoogle Scholar
  11. Bories, P. N., and Bories, C., 1995, Nitrate determination in biological fluids by an enzymatic one-step assay with nitrate reductase, Clin. Chem. 41 (6): 904–907.Google Scholar
  12. Bowersox, S. S., Singh, T., and Luther, R. R., 1997, Selective blockade of N-type voltage-sensitive calcium channels protects against brain injury after transient focal cerebral ischemia in rats, Brain Res. 747 (2): 343–347.CrossRefGoogle Scholar
  13. Braquet, P., Spinnewyn, B., Demerle, C., Hosford, D., Marcheselli, V., Rossowska, M., and Bazan, N. G., 1989, The role of platelet-activating factor in cerebral ischemia and releted disorders, Ann. NY Acad. Sci., 559: 296–312.CrossRefGoogle Scholar
  14. Bredt, D. S., and Snyder, S. H., 1990, Isolation of nitric oxide synthetase, a calmoduline-requiring enzyme, Proc. Natl. Acad. Sci., USA 87: 682–685.Google Scholar
  15. Brune, B., and Lapetina, E. G., 1992, Specific phosphorylation of nitric oxide synthase by protein kinase A, in: The Biology of Nitric Oxide, Enzymology, Biochemistry, and Immunology, ( S. Moncada, M. A. Marietta, J. B. Hibbs, and E. A. Higgs, eds.), pp. 132, Portland Press, London.Google Scholar
  16. Buisson, A., Margaill, I., Callebert, J., Plotkine, M., and Boulu, R. G., 1993, Mechanisms involved in the neuro-protective activity of a nitric oxide synthase inhibitor during focal cerebral ischemia, J. Neuroc hem. 61 (2): 690–696.CrossRefGoogle Scholar
  17. Cafe, C., Torri, C., and Marzatico, F., 1993, Cellular and molecular events of ischemic brain damage, Funct. Neurol. 8 (2): 121–133.Google Scholar
  18. Chan, P. H., 1996, Role of oxidants in ischemic brain damage, Stroke 27 (6): 1124–1129.CrossRefGoogle Scholar
  19. Chan, P. H., Epstein, C. J., Li, Y., Huang, T. T., Carlson, E., Kinouchi, H., Yang, G., Kamii, H., Mikawa, S., and Kondo, T., 1995, Transgenic mice and knockout mutants in the study of oxidative stress in brain injury, J. Neurotrauma 12 (5): 815–824.CrossRefGoogle Scholar
  20. Chen, S. T., Hsu, C. Y., Hogan, E. L., Maricq, H., and Balentine, J. D., 1986, A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction, Stroke 17 (4): 738–743.CrossRefGoogle Scholar
  21. Choi, D. W., 1988, Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage, Trends in Neuroscience 11: 465–469.CrossRefGoogle Scholar
  22. Choi, D. W., 1990, Cerebral hypoxia: some new approaches and unanswered questions, J. Neurosci. 10 (8): 2493–2501.Google Scholar
  23. Choi, D. W., 1994, Calcium and excitotoxic neuronal injury, in: Calcium Hypothesis of Aging and Dementia, Volume 747 ( J. F. Disterhoft, W. H. Gispen, J. Traber, and Z. S. Khachaturian, eds.), pp. 162–171, Annals of the New York Academy of Sciences, New York.Google Scholar
  24. Clemens, J. A., Saunders, R. D., Ho, P. P., Phebus, L. A., and Panetta, J. A., 1993, The antioxidant LY231617 reduces global ischemic neuronal injury in rats, Stroke 24: 716–723.CrossRefGoogle Scholar
  25. Dalkara, T., and Moskowitz, M. A., 1994a, The complex role of nitric oxide in the pathophysiology of focal cerebral ischemia, Brain Pathol. 4: 49–57.CrossRefGoogle Scholar
  26. Dalkara, T., Yoshida, T., Irikura, K.,and Moskowitz, M. A., 1994b, Dual role of nitric oxide in focal cerebral ischemia, Neuropharmacology 33 (11): 1447–1452.Google Scholar
  27. Dawson, D. A., 1994, Nitric oxide and focal cerebral ischemia: multiplicity of actions and diverse outcome, Cerebrovasc. Brain Metab. Rev. 6 (4): 299–324.Google Scholar
  28. Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S., and Snyder, S. H., 1991, Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures, Proc. Natl. Acad. Sci, USA 88: 6368–6371.Google Scholar
  29. Dawson, T. M., Dawson, V. L., and Snyder, S. H., 1992, A novel neuronal messenger in brain: The free radical, nitric oxide. Ann. Neurol. 32: 297–311.CrossRefGoogle Scholar
  30. Escuret, E., 1995, Cerebral ischemic cascade, Ann. Fr. Anesth. Reanim. 14 (1): 103–113.CrossRefGoogle Scholar
  31. Garthwaite, J., 1993, Nitric oxide signalling in the nervous system, in Nitric Oxide: Brain and Immune System, ( S. Moncada, G. Nistico, and E. A. Higgs, eds.), pp. 85–97, Portland Press, London.Google Scholar
  32. Germano, I. M., Bartkowski, H. M., Cassel, M. E., and Pitts, L. H., 1987, The therapeutic value of nimodipine in experimental focal cerebral ischemia, J. Neurosurg. 67: 81–87.CrossRefGoogle Scholar
  33. Grogaard, B., Schürer, L., Gerdin, B., and Arfors, K. E., 1989, Delayed hypoperfusion after incomplete forebrain ischemia in the rat. The role of polymorphonuclear leukocytes, J. Cereb. Blood Flow Metab. 9: 500–505.CrossRefGoogle Scholar
  34. Habu, H., Yokoi, I., Kabuto, H., and Mori, A., 1994, Application of automated flow injection analysis to determine nitrite and nitrate in mouse brain, NeuroReport 5 (13): 1571–1573.Google Scholar
  35. Halliwell, B., 1989, Oxidants and the central nervous system: some fundamental questions, Acta Neurol. Scand. 126: 23–33.CrossRefGoogle Scholar
  36. Halliwell, B., 1991, Drug antioxidant effects, Drugs 42 (4): 569–605.CrossRefGoogle Scholar
  37. Hamada, J., Greenberg, J. H., Croul, S., Dawson, T. M., and Reivich, M., 1995, Effects of central inhibition of nitric oxide synthase on focal cerebral ischemia in rats, J. Cereb. Blood Flow Metab. 15 (5): 779–786.CrossRefGoogle Scholar
  38. Hanbauer, I., 1993, The role of nitric oxide in neurotransmitter release, in Nitric Oxide: Brain and Immune System, ( S. Moncada, G. Nistico, and E. A. Higgs, eds.), pp. 135–143, Portland Press, London.Google Scholar
  39. Hansen, A. J., 1995, The importance of glutamate receptors in brain ischemia, in: Neurochemistry in Clinical Applications, Volume 363 ( L. C. Tang, and S. J. Tang, eds.), pp. 123–131, Plenum Press, New York.Google Scholar
  40. Huang, Z., Huang, P. L., Panahian, N., Dalkara, T., Fishman, M. C., and Moskowitz, M. A., 1994, Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase, Science 265 (5180): 1883–1885.CrossRefGoogle Scholar
  41. Iadecola, C., Xu, S., Zhang, F., el-Fakahany, E. E., and Ross, M. E., 1995a, Marked induction of calcium-independent nitric oxide synthase activity after focal cerebral ischemia, J. Cereb. Blood Flow Metab. 15 (1): 52–59.CrossRefGoogle Scholar
  42. Iadecola, C., Zhang, F., and Xu, S., 1995b, Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage, Am. J. Physiol. 268 (12): R286–292.Google Scholar
  43. Iadecola, C., Zhang, F., Xu, S., Casey, R., and Ross, M. E., 1995c, Inducible nitric oxide synthase gene expression in brain following cerebral ischemia, J. Cereb. Blood Flow Metab. 15 (3): 378–384.CrossRefGoogle Scholar
  44. Jiang, N., Kowaluk, E. A., Lee, C. H., Mazdiyasni, H., and Chopp, M., 1997, Adenosine kinase inhibition protects brain against transient focal ischemia in rats, Eur. J. Pharmacol, 320 (2–3): 131–137.CrossRefGoogle Scholar
  45. Kader, A., Frazzini, V. I., Solomon, R. A., and Trifiletti, R. R., 1993, Nitric oxide production during focal cerebral ischemia in rats, Stroke 24: 1709–1716.CrossRefGoogle Scholar
  46. Kader, A., Frazzini, V. I., Baker, C. J., Solomon, R. A., and Trifiletti, R. R., 1994, Effect of mild hypothermia on nitric oxide synthesis during focal cerebral ischemia, Neurosurgery, 35 (2): 272–277.CrossRefGoogle Scholar
  47. Kamii, H., Mikawa, S., Murakami, K., Kinouchi, H., Yoshimoto, T., Reola, L., Carlson, E., Epstein, C. J., and Chan, P. H., 1996, Effects of nitric oxide synthase inhibition on brain infarction in SOD-1 transgenic mice following transient focal cerebral ischemia, J. Cereb. Blood Flow Metab. 16 (6): 1153–1157.CrossRefGoogle Scholar
  48. Kawaguchi, K., and Graham, S. H., 1997, Neuroprotective effects of the glutamate release inhibitor 619C89 in temporary middle cerebral artery occlusion, Brain Res. 749 (1): 131–134.CrossRefGoogle Scholar
  49. Kawai, H., Nakai, H., Suga, M., Yuki, S., Watanabe, T., and Saito, K. I., 1997, Effects of a novel free radical scavenger, MCI-186, on ischemic brain damage in the rat distal middle cerebral artery occlusion model, J. Pharmacol. Exp. Ther. 281 (2): 921–927.Google Scholar
  50. Knowles, R. G., and Moncada, S., 1992, Nitric oxide as a signal in blood vessels, Trends Biochem. Sci. 17: 399–402.CrossRefGoogle Scholar
  51. Knowles, R. G., Palacios, M., Palmer, R. M. J., and Moncada, S. 1989, Formation of nitric oxide from L-arginine in the central nervous system: A transduction mechanism for stimulation of the soluble guanylate cyclase, Proc. Natl. Acad. Sci. USA 86: 5159–5162.CrossRefGoogle Scholar
  52. Kogure, K., 1990, Trans-NMDA receptor signalling in ischemia-induced brain cell damage, Trans. Am. Soc. Neurochem 21: 185–192.Google Scholar
  53. Kumura, E., Kosaka, H., Shiga, T., Yoshimine, T., and Hayakawa, T.,1994, Elevation of plasma nitric oxide end products during focal cerebral ischemia and reperfusion in the rat, J. Cereb. Blood Flow Metab. 14(3): 487–491.Google Scholar
  54. Kumura, E., Yoshimine, T., Iwatsuki, K. 1., Yamanaka, K., Tanaka, S., Hayakawa, T., Shiga, T., and Kosaka, H., 1996, Generation of nitric oxide and superoxide during reperfusion after focal cerebral ischemia in rats, Am. J. Physiol. 270 (31): C748 - C752.Google Scholar
  55. Leach, M. J., Swan, J. H., Eisenthal, D., Dopson, M., and Nobbs, M., 1993, BW619C89, a glutamate release inhibitor, protects against focal cerebral ischemic damage, Stroke, 24: 1063–1067.CrossRefGoogle Scholar
  56. Malinski, T., Patton, S., Grunfeld, S., Kubaszewski, E., Pierchala, B., Kiechle, F., and Radomski, M. W., 1994, Determination of nitric oxide in vivo by a porphyrinic microsensor, in: The Biology of Nitric Oxide, Physiological and Clinical Aspects ( S. Moncada, M. Feelisch, R. Busse, and E. A. Higgs, eds.), pp. 48–53, Portland Press, London.Google Scholar
  57. Margaill, I., Parmentier, S., Callebert, J., Allix, M., Boulu, R. G., and Plotkine, M., 1996, Short therapeutic window for MK-801 in transient focal cerebral ischemia in normotensive rats, J. Cereb. Blood flow Metab. 16 (1): 107–113.CrossRefGoogle Scholar
  58. Marks, K. A., Mallard, C. E., Roberts, I., Williams, C. E., Gluckman, P. D., and Edwards, A. D., 1996, Nitric oxide synthase inhibition attenuates delayed vasodilation and increases injury after cerebral ischemia in fetal sheep, Pediatr. Res. 40 (2): 185–191.CrossRefGoogle Scholar
  59. Meldrum, B. S., 1994, Lamotrigine: a novel approach, Seizure 3: 41–45.Google Scholar
  60. Meldrum, B. S., Swan, J. H., and Leach, M. J., 1992, Reduction of glutamate release and protection against ischemic damage by BW1003C87, Brain Res. 593: 1–6.CrossRefGoogle Scholar
  61. Meyer, F. B., Anderson, R. E., Yaksh, T. L., and Sundt, T. M., 1986, Effect of nimodipine on intracellular brain pH, cortical blood flow, and EEG in experimental focal cerebral ischemia, J. Neuroswg. 64: 617–626.CrossRefGoogle Scholar
  62. Mittal, C. K., 1993, Nitric oxide synthase: involvement of oxygen radicals in conversion of L-arginine to nitric oxide, Biochem. Biophys. Res. Commun. 193 (1): 126–132.CrossRefGoogle Scholar
  63. Moncada, C., Lekieffre, D., Arvin, B., and Meldrum, B. S., 1993, The involvement of nitric oxide in neuronal damage in a focal model of excitotoxicity in vivo and a global model of ischemia, in Nitric Oxide: Brain and Immune System, ( S. Moncada, G. Nistico, and E. A. Higgs, eds.), pp. 191–199, Portland Press, London.Google Scholar
  64. Moskowitz, M. A., and Dalkara, T., 1996, Nitric oxide and cerebral ischemia, Adv. Neurol. 71: 365–367.Google Scholar
  65. Nowicki, J. P., Carreau, A., Duval, D., Vige, X., and Scatton, B., 1993, Neuroprotective potential of nitric oxide synthase inhibitors, in Nitric Oxide: Brain and Immune System, ( S. Moncada, G. Nistico, and E. A. Higgs, eds.), pp. 121–135, Portland Press, London.Google Scholar
  66. Obrenovich, T. P., 1995, The ischaemic penumbra: twenty years on, Cerebrovasc. Brain Metab. Rev. 7 (4): 297–323.Google Scholar
  67. Ozyurt, E., Graham, D. I., Woodruff, G. N., and McCulloch, J., 1988, Protective effect of the glutamate antagonist, MK-801 in focal cerebral ischemia in the cat, J. Cereb. Blood Flow Metab. 8 (1): 138–143.CrossRefGoogle Scholar
  68. Park, C. K., Nehls, D. G., Graham, D. I., Teasdale, G. M., and McCulloch, J., 1988, The glutamate antagonist MK801 reduces focal ischemic brain damage in the rat, Ann. Neurol. 24: 543–551.CrossRefGoogle Scholar
  69. Planas, A. M., Justicia, C., and Ferrer, 1., 1997, Stat 1 in developing and adult rat brain. Induction after transient focal ischemia, Neuroreport 8 (6): 1359–1362.CrossRefGoogle Scholar
  70. Pulsinelli, W., 1992, Pathophysiology of acute ischemic stroke, The Lancet 339: 533–537.CrossRefGoogle Scholar
  71. Rami, A., and Krieglstein, J., 1994, Neuronal protective effects of calcium antagonists in cerebral ischemia, Life Sciences 55 (226): 2105–2113.CrossRefGoogle Scholar
  72. Regli, L., Held, M. C., Anderson, R. E., Meyer, F. B., Thoralf, M., and Sundt, Jr. M. D., 1996, Nitric oxide synthase inhibition by L-NAME prevents brain acidosis during focal cerebral ischemia in rabbits, J. Cereb. Blood Flow Metab. 16 (5): 988–995.CrossRefGoogle Scholar
  73. Rice-Evans, C. A., Diplock, A. T., and Symons, M. C. R., 1991, The detection and characterization of free radical species, in: Techniques in Free Radical Research, Volume 22 ( R. H. Burdon, and P. H. van Knippenberg, eds.), pp. 51–99, Elsevier Science Publishers BV, Amsterdam.Google Scholar
  74. Samdani, A. F., Dawson, T. M., and Dawson, V. L., 1997, Nitric oxide synthase in models of focal ischemia, Stroke 28 (6): 1283–1288.CrossRefGoogle Scholar
  75. Scatton, B., 1994, Excitatory amino acid receptor antagonists: a novel treatment for ischemic cerebrovascular diseases, Life Sciences 55 (226): 2115–2124.CrossRefGoogle Scholar
  76. Scheinberg, P., 1991, The biologic basis for the treatment of acute stroke, Neurology 41: 1867–1873.CrossRefGoogle Scholar
  77. Schott, R. J., Natale, J. E., Ressler, S. W., Burney, R. E., and D’Alecy, L. G., 1989, Neutrophil depletion fails to improve neurologic outcome after cardiac arrest in dogs, Ann. Emerg. Med. 18: 517–522.CrossRefGoogle Scholar
  78. Shimazu, M., Mizushima, H., Sasaki, K., Arai, Y., Matsumoto, K., Shioda, S., and Nakai, Y., 1994, Expression of c-fos in the rat cerebral cortex after focal ischemia and reperfusion, Brain Res. Bull. 33 (6): 689–697CrossRefGoogle Scholar
  79. Shuaib, A., Mahmood, R. H., Wishart, T., Kanthan, R., Murabit, M. A., Ijaz, S., Miyashita, H., and Howlett, W., 1995, Neuroprotective effects of lamotrigine in global ischemia in gerbils. A histological, in vivo microdialysis and behavioral study, Brain Res. 702 (12): 199–206.CrossRefGoogle Scholar
  80. Siesjö, B. K., 1992a, Pathophysiology and treatment of focal cerebral ischemia Part I: Pathophysiology, J. Neurosurg. 77: 169–184.CrossRefGoogle Scholar
  81. Siesjö, B. K., 1992b, Pathophysiology and treatment of focal cerebral ischemia Part II: Mechanisms of damage and treatment, J. Neurosurg. 77: 337–354.CrossRefGoogle Scholar
  82. Siesjö, B. K., 1994, Calcium-mediated processes in neuronal degeneration, in: Calcium Hypothesis of Aging and Dementia, Volume 747 ( J. F. Disterhoft, W. H. Gispen, J. Traber, and Z. S. Khachaturian, eds.), pp. 140–162, Annals of the New York Academy of Sciences, New York.Google Scholar
  83. Snyder, S. H., 1992, Nitric oxide: first in a new class of neurotransmitters, Science 257: 494–498.CrossRefGoogle Scholar
  84. Springall, D. R., Suburo, A., Bishop, A. E., Merrett, M., Moncada, S., and Polak, J. M., 1992, Nitric oxide synthase is present abundantly in human neurons and vascular endothelium, in: The Biology of Nitric Oxide, Enzymology, Biochemistry, and Immunology, ( S. Moncada, M. A. Marietta, J. B. Hibbs, and E. A. Higgs, eds.), pp. 117–119, Portland Press, London.Google Scholar
  85. Stamler, S. S., Singel, D. J., and Loscalzo, J., 1992, Biochemistry of nitric oxide and its redox-activated forms, Science 258: 1898–1902.CrossRefGoogle Scholar
  86. Stuhlmiller, D. F., and Boje, K. M., 1995, Characterization of L-arginine and aminoguanidine uptake into isolated rat choroid plexus: differences in uptake mechanisms and inhibition by nitric oxide synthase inhibitors, J. Neurochem. 65 (1): 68–74.CrossRefGoogle Scholar
  87. Takizawa, S., Matsushima, K., Fujita, H., Nanri, K., Ogawa, S., and Shinora, Y., 1995, A selective N-type calcium channel antagonist reduces extracellular glutamate release and infarct volume in focal cerebral ischemia, J. Cereb. Blood Flow Metab. 15 (4): 611–618.CrossRefGoogle Scholar
  88. Traystman, R. J., Kirsch, J. R., and Koehler, R. C., 1991, Oxygen radical mechanisms of brain injury following ischemia and reperfusion, J. Appl. Physiol. 71 (4): 1185–1191.Google Scholar
  89. Umemura K., Gemba, T., Mizuno, A., and Nakashima, M., 1996, Inhibitory effect of MS-153 on elevated brain glutamate level induced by rat middle cerebral artery occlusion, Stroke 27 (9): 1624–1628.CrossRefGoogle Scholar
  90. White, B. C., Grossman, L. I., and Krause, G. S., 1993, Brain injury by global ischemia and reperfusion: a theoretical perpective on membrane damage and repair, Neurology 43: 1656–1665.CrossRefGoogle Scholar
  91. Wiard, R. P., Dickerson, M. C., Beek, O., Norton, R., and Cooper, B. R., 1995, Neuroprotective properties of the novel antiepileptic lamotrigine in a gerbil model of global cerebral ischemia, Stroke 26 (3): 466–472.CrossRefGoogle Scholar
  92. Winfree, C. J., Baker, C. J., Connoly, E. S. Jr., Fiore, A. J., and Solomon, R. A., 1996, Mild hypothermia reduces penumbral glutamate levels in the rat permanent focal cerebral ischemia model, Neurosurgery 38 (6): 1216–1222.Google Scholar
  93. Wong, M. L., Loddick, S. A., Bongiorno, R. B., Gold, P. W., Rothwell, N. J., and Licinio, J., 1995, Focal cerebral ischemia induces CRH mRNA in rat cerebral cortex and amygdale, Neuroreport 6 (13): 1785–1788.CrossRefGoogle Scholar
  94. Xia, Y., Dawson, V. L., Dawson, T. M., Snyder, S. H., and Zweier, J. L., 1996, Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury, Proc. Natl. Acad. Sci. USA 93 (13): 6770–6774.CrossRefGoogle Scholar
  95. Yamamoto, S., Golanov, E. V., Berger, S. B., and Reis, D. J., 1992, Inhibition of nitric oxide synthesis increases focal ischemic infarction in rat,, J. Cereb. Blood Flow Metab. 12 (5): 717–726.CrossRefGoogle Scholar
  96. Zhang, F., Xu, S., and ladecola, C., 1995, Time dependence of effect of nitric oxide synthase inhibition on cerebral ischemic damage, J. Cereb. Blood Flow Metab. 15 (4): 595–601.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Tomris Özben
    • 1
  1. 1.Department of BiochemistryAkdeniz University Medical FacultyAntalyaTurkey

Personalised recommendations