Compartmentation of Alkaloid Synthesis, Transport, and Storage
Abstract
The formation and sequestration of secondary metabolites is often regulated in space and time and correlated with differentiation (Wiermann, 1981). The importance of this correlation has been encountered in undifferentiated plant cell cultures, which either do not produce an alkaloid that is typically present in the intact plant or they accumulate the compounds in very low yields. The comparably few systems that produce high amounts of alkaloids are unfortunately rather the exception (Chapter 7). On the other hand, differentiated organ cultures, such as root or shoot cultures, are very reliable production systems, indicating that it is not the in vivo condition that is responsible for low yields in cell suspension cultures, but rather the degree of differentiation, i.e., differential gene expression of the enzymes involved in alkaloid biosynthesis and alkaloid storage.
Keywords
Alkaloid Biosynthesis Cyanogenic Glycoside Catharanthus Roseus Plant Vacuole Quinolizidine AlkaloidPreview
Unable to display preview. Download preview PDF.
References
General Reviews
- Alibert, G., Boudet, A. M., Canut, H., and Rataboul, P., 1985, Protoplasts in studies of vacuolar storage compounds, in: Physiological Properties of Plant Protoplasts (P. E. Pilet, ed.), Springer-Verlag, Berlin, pp. 105–115.CrossRefGoogle Scholar
- Blumwald, E., 1987, Tonoplast vesicles as a tool in the study of ion transport at the plant vacuole, Physiol. Plant. 69:731–734.CrossRefGoogle Scholar
- Boiler, T., and Wiemken, A., 1986, Dynamics of vacuolar compartmentation, Ann. Rev. Plant Physiol. 37:137–164.CrossRefGoogle Scholar
- Boiler, T., and Wiemken, A., 1987, Dynamics of lysosomal functions in plant vacuoles, in: Plant Vacuoles (B. Marin, ed.), Plenum Press, New York, pp. 361–368.CrossRefGoogle Scholar
- Chrispeels, M. J., 1991, Sorting of proteins in the secretory system, Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:21–53.CrossRefGoogle Scholar
- Guern, J., Renaudin, J. P., and Brown, S. C., 1987, The compartmentation of secondary metabolites in plant cell cultures, in: Cell Culture and Somatic Cell Genetics of Plants, Vol. 4 (F. Constabel and I. Vasil, eds.), Academic Press, San Diego, pp. 43–76.Google Scholar
- Hager, A., and Hermsdorf, P., 1981, A H/Ca-antiporter in membranes of microsomal vesicles from maize coleoptiles, a secondary energized Ca pump, Z. Naturforsch. 36c: 1009–1012.Google Scholar
- Hediger, M. A., 1994, Structure, function and evolution of solute transporters in procaryotes and eucaryotes, J. Exp. Biol. 196:15–49.PubMedGoogle Scholar
- Hedrich, R., and Schröder, J., 1989, Physiology of ion channels and ion pumps of higher plant cells, Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:539–569.CrossRefGoogle Scholar
- Kreis, W., and Hölz, H., 1991, Zellulärer Transport und Speicherung von Naturstoffen, Naturwiss. Rundsch. 44:463–470.Google Scholar
- Kurkdjian, A., and Guern, J., 1989, Intracellular pH—Measurement and importance in cell activity, Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:271–303.CrossRefGoogle Scholar
- Leigh, R. A., 1983, Methods, progress and potential for use of isolated vacuoles of solute transport in higher plants, Physiol. Plant. 57:390–396.CrossRefGoogle Scholar
- Mäder, M., 1984, Die Pflanzliche Vakuole aus biochemischer Sicht, Biol. Unserer Zeit 14:171–176.CrossRefGoogle Scholar
- Marty, F., Branton, D., and Leigh, R. A., 1980, Plant vacuoles, in: The Biochemistry of Plants: A Comprehensive Treatise, Vol. 1 (N. E. Tolbert, ed.), Macmillan Co., New York, pp. 625–658.Google Scholar
- Matern, U., 1987, Die Isomerenfalle für Sekundärmetabolite, eine Alternative zum Ionenfallen-Modell, Biol. Unserer Zeit 17:148–152.CrossRefGoogle Scholar
- Matile, P., 1978, Biochemistry and function of vacuoles, Annu. Rev. Plant Physiol. 29:193–213.CrossRefGoogle Scholar
- Matile, P., 1984, Das Toxische Kompartiment der Pflanzenzelle, Naturwissenschaften 71:18–24.CrossRefGoogle Scholar
- Meijer, A. H., Verpoorte, R., and Hoge, J. H. C., 1993, Regulation of enzymes and genes involved in terpenoid indole alkaloid biosynthesis in Catharanthus roseus, J. Plant Res. Spec. Iss. 3:145–164.Google Scholar
- Reinhold, L., and Kaplan, A., 1984, Membrane transport of sugars and amino acids, Annu. Rev. Plant Physiol. 35:45–83.CrossRefGoogle Scholar
- Renaudin, J. P., and Guern, J., 1990, Transport and vacuolar storage of secondary metabolites in plant cell cultures, in: Secondary Products from Plant Tissue Culture (B. C. Charwood and M. J. C. Rhodes, eds.), Proc. Phytochem. Soc. Eur. 30:59–78.Google Scholar
- Ruesink, A., 1980, Protoplasts of plant cells, Methods Enzymol. 69:69–84.CrossRefGoogle Scholar
- Ryan, C. A., and Walker-Simmons, M., 1983, Plant vacuoles, Methods Enzymol. 96:580–589.PubMedCrossRefGoogle Scholar
- Sanders, D., 1990, Kinetic modeling of plant and fungal membrane transport systems, Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:77–107.CrossRefGoogle Scholar
- Sze, H., 1985, H-translocating ATPase: Advances using membrane vesicles, Annu. Rev. Plant Physiol. 36:175–208.CrossRefGoogle Scholar
- Taiz, L., 1992, The plant vacuole, J. Exp. Biol. 172:113–122.PubMedGoogle Scholar
- Wagner, G. J., 1982, Compartmentation in plant cells: The role of the vacuole, in: Recent Advances in Phytochemistry, Vol. 16 (L. Creasy and G. Hrazdina, eds.), Plenum Press, New York, pp. 1–45.Google Scholar
- Wiermann, R., 1981, Secondary plant products and cell and tissue differentiation, in: The Biochemistry of Plants Vol. 7, Academic Press, San Diego, pp. 85–116.Google Scholar
- Willenbrink, J., 1987, Die pflanzliche Vacuole als Speicher, Naturwissenschaften 74:22–29.CrossRefGoogle Scholar
- Wink, M., 1987a, Quinolizidine alkaloids: Biochemistry, metabolism, and function in plants and cell suspension cultures, Planta Med. 53:509–514.PubMedCrossRefGoogle Scholar
- Wink, M., 1987b, Physiology of the accumulation of secondary metabolites with special reference to alkaloids, in: Cell Culture and Somatic Cell Genetics of Plants, Vol. 4, (F. Constabel and I. Vasil, eds.), Academic Press, San Diego, pp. 17–41.Google Scholar
- Wink, M., 1988, Plant breeding: Importance of plant secondary metabolites for protection against pathogens and herbivores, Theor. Appl. Genet. 75:225–233.CrossRefGoogle Scholar
- Wink, M., 1990, Physiology of secondary product formation in plants, in: Secondary Products from Plant Tissue Culture (B. C. Charwood and M. J. C. Rhodes, eds.), Proc. Phytochem. Soc. Eur. 30:23–41.Google Scholar
- Wink, M., 1993a, The plant vacuole: A multifunctional compartment, J. Exp. Bot. 44(Suppl.):231–246.Google Scholar
- Wink, M., 1993b, Allelochemical properties or the raison d’être of alkaloids, in: The Alkaloids, Vol. 43, (G. A. Cordeil, ed.), Academic Press, San Diego, pp. 1–118.Google Scholar
- Wink, M., 1997, Compartmentation of secondary metabolites and xenobiotics in plant vacuoles, Adv. Bot. Res. 25:141–169.CrossRefGoogle Scholar
- Zenk, M. H., 1989, Biosynthesis of alkaloids using tissue culture, Recent Adv. Phytochem. 23:429–457.Google Scholar
Special References
- Aerts, R. J., and Baumann, T. W., 1994, Distribution and utilization of chlorogenic acid in Coffea seedlings, J. Exp. Bot. 45:457–503.CrossRefGoogle Scholar
- Aerts, R. J., and DeLuca, V., 1992, Phytochrome is involved in the light-regulation of vindoline biosynthesis in Catharanthus, Plant Physiol. 100:1029–1032.CrossRefGoogle Scholar
- Aerts, R. J., Snoeijer, W., Aerts-Teerlink, O., van der Meijden, E., and Verpoorte, R., 1991, Control and biological implications of alkaloid synthesis in Cinchona seedlings, Phytochemistry 30:3571–3577.CrossRefGoogle Scholar
- Alibert, G., Carrasco, A., and Boudet, A. M., 1982, Changes in biochemical composition of vacuoles isolated from Acer pseudoplatanus L during cell culture, Biochim. Biophys. Acta 721:22–29.CrossRefGoogle Scholar
- Amann, M., Wanner, G., and Zenk, M. H., 1986, Purification and characterisation of (S)-tetrahydroberberine oxidase from cultured Coptis japonica cells, Phytochemistry 37:979–982.Google Scholar
- Blackford, S., Rea, P. A., and Sanders, D., 1990, Voltage sensitivity of H/Ca antiport in higher plant tonoplast suggests a role in vacuolar calcium accumulation, J. Biol. Chem. 265:9617–9620.PubMedGoogle Scholar
- Blom, T. J. M., Van Vliet, T. B., Schripsema, J., Val, J., Van Iren, F., Verpoorte, R., and Libbenga, K. R., 1991a, Uptake and accumulation of the alkaloids quinine and cinchonamine in cultured cells of Cinchona robusta and Catharanthus roseus, J. Plant Physiol. 138:436–442.CrossRefGoogle Scholar
- Blom, T. J. M., Sierra, M., Van Vliet, T. B., Franke-van Dijk, M. E., De Koning, P., Van Iren, F., Verpoorte, R., and Libbenga, K. R., 1991b, Uptake and accumulation of ajmalicine into isolated vacuoles of cultured cells of Catharanthus roseus (L.) G. Don., and its conversion into serpentine, Planta 183:170–177.CrossRefGoogle Scholar
- Blumwald, E., and Poole, R. J., 1985a, Na/H-antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris, Plant Physiol. 78:163–167.PubMedCrossRefGoogle Scholar
- Blumwald, E., and Poole, J., 1985b, Nitrate storage and retrieval in Beta vulgaris—Effects of nitrate and chloride on proton gradients in tonoplast vesicles, Proc. Natl. Acad. Sci. USA 82:3683–3687.PubMedCrossRefGoogle Scholar
- Boller, T., Dürr, M., and Wiemken, A., 1975, Characterization of a specific transport system for arginine in isolated yeast vacuoles, Eur. J. Biochem. 54:81–91.PubMedCrossRefGoogle Scholar
- Bouzayen, M., Ltche, A., Pech, J.-C., and Marigo, G., 1989). Carrier-mediated uptake of l-(malonylamino)-cyclopropane-1-carboxylic acid in vacuoles isolated from Catharanthus roseus cells, Plant Physiol. 91:1317–1322.PubMedCrossRefGoogle Scholar
- Bremberger, C., Haschke, H.-P., and Lüttge, U., 1988, Separation and purification of the tonoplast ATPase and pyrophosphatase from plants with constitutive and inducible crassulacean acid metabolism, Planta 175: 465–470.CrossRefGoogle Scholar
- Briskin, D. P., Thornley, W R., and Wyse, R. E., 1985, Membrane transport in isolated vesicles from sugarbeet taproot. II. Evidence for a sucrose/K-antiport, Plant Physiol. 78:871–875.PubMedCrossRefGoogle Scholar
- Brisson, L., Charest, P. M., De Luca, V., and Ibrahim, R. K., 1992, Immunocytochemical localization of vindoline in mesophyll protoplasts of Catharanthus roseus, Phytochemistry 31:465–470.CrossRefGoogle Scholar
- Chrispeels, M. J., and Raikhel, N. V., 1992, Short peptide domains target proteins to vacuoles, Cell 68:613–616.PubMedCrossRefGoogle Scholar
- Christmann, J., Kreis, W., and Reinhard, E., 1993, Cardenolide sinks and occurrence of cardenolides in the sieve tubes of Digitalis lanata, Bot. Acta 106:419–427.Google Scholar
- Deus-Neumann, B., and Zenk, M. H., 1984, A highly selective alkaloid uptake system in vacuoles of higher plants, Planta 162:250–260.CrossRefGoogle Scholar
- Deus-Neumann, B., and Zenk, M. H., 1986, Accumulation of alkaloids in plant vacuoles does not involve an iontrap mechanism, Planta 166:44–53.CrossRefGoogle Scholar
- Ehmke, A., von Borstel, K., and Hartmann, T., 1987, Specific uptake of the N-oxides of pyrrolizidine alkaloids by cells, protoplasts and vacuoles from Senecio cell cultures, in: Plant Vacuoles, Vol. 134, NATO ASI Series (B. Marin, ed.), Plenum Press, New York, pp. 301–304.CrossRefGoogle Scholar
- Ehmke, A., von Borstel, K., and Hartmann, T., 1988, Alkaloid-N-oxides as transport and vacuolar storage compounds of pyrrolizidine alkaloids in Senecio vulgaris, Planta 176:83–90.CrossRefGoogle Scholar
- Eilert, U., Wolters, B., and Constabel, F., 1985, Ultrastructure of acridone alkaloid idioblasts in roots and cell cultures of Ruta graveolens, JCan. Bot. 64:1089–1096.CrossRefGoogle Scholar
- Endo, T., Goodbody, A., and Misawa, M., 1987, Alkaloid production in root and shoot cultures of Catharanthus roseus. Planta Med. 479–482.Google Scholar
- Franceschi, V. R., and Horner, H. T., 1980, Calcium oxalate cristals in plants, Bot. Rev. 46:361–427.CrossRefGoogle Scholar
- Getz, H. P., 1991, Sucrose transport in tonoplast vesicles of red beet roots is linked to ATP hydrolysis, Planta 185:261–268.CrossRefGoogle Scholar
- Gonnet, J. F., and Hieu, H., 1992, In situ micro-spectrophotometric and micro-spectrocolorimetric investigation of vacuolar pigments in flowers of cultivars of carnation (Dianthus caryophyllus), J. Hortic. Sci. 67:663–676.Google Scholar
- Gruhnert, C., Biehl, B., and Selmar, D., 1994, Compartmentation of cyanogenic glucoside and their degrading enzymes, Planta 195:36–42.CrossRefGoogle Scholar
- Han, S. R., Campbell, W. F., and Salunkhe, D. K., 1989, Ultrastructural localization of solanidine in potato tubers, J. Food Biochem. 13:377–389.CrossRefGoogle Scholar
- Harborne, J. B., Greenham, J., Williams, C. A., Eagles, J., and Markham, K. R., 1993, Ten isoprenylated and C-methylated flavonoids from the leaves of three Vellozia species, Phytochemistry 34:219–226.CrossRefGoogle Scholar
- Hauser, M.-T., and Wink, M., 1990, Uptake of alkaloids by latex vesicles and isolated mesophyll vacuoles of Chelidonium majus (Papaveraceae), Z. Naturforsch. 45c:949–957.Google Scholar
- Hedrich, R., Kurkdjian, A., Guern, J., and Flügge, U. I., 1989, Comparative studies on the electrical properties of the H translocating ATPase and pyrophosphatase of the vacuolar/lysosomal compartment, EMBO J. 8:2835–2841.PubMedGoogle Scholar
- Holländer-Czytko, H., and Amrhein, N., 1983, Subcellular compartmentation of shikimic acid and phenylalanine in buckwheat cell suspension cultures grown in the presence of shikimate pathway inhibitors, Plant Sci. Lett. 29:89–96.CrossRefGoogle Scholar
- Homeyer, B. C., and Roberts, M. F., 1984, Dopamine accumulation in Papaver somniferum latex, Z. Naturforsch. 39c: 1034–1037.Google Scholar
- Hopp, W., and Seitz, H. U., 1987, The uptake of acylated anthocyanin into isolated vacuoles from a cell suspension culture of Daucus carota, Planta 170:74–85.CrossRefGoogle Scholar
- Hrazdina, G., Marx, G. A., and Hoch, H. C., 1982, Distribution of secondary plant metabolites and their biosynthetic enzymes in pea (Pisum sativum) leaves. Anthocyanins and flavonol glycosides, Plant Physiol. 70:745–748.PubMedCrossRefGoogle Scholar
- Hsu, L.-C., Chiou, T.-J., Chen, L., and Bush, D. R., 1993, Cloning a plant amino acid transporter by functional complementation of a yeast amino acid transporter mutant, Proc. Natl. Acad. Sci. USA 90:7441–7445.PubMedCrossRefGoogle Scholar
- Ideda, K., Teshima, D., Aoyama, T., Satake, M., and Shimomura, K., 1988, Clonal propagation of Cephaelis ipecacuanha, Plant Cell Rep. 7:288–291.CrossRefGoogle Scholar
- Ishikura, N., 1981, Flavonoids in the petal cells of Anagallis arvensis f. coerulea containing a blue crystalline anthocyanin, Z. Pflanzenphysiol. 103:469–473.Google Scholar
- Janiszowska, W., and Szakiel, A., 1992, The transport of 3H-oleanolic acid and its monoglycosides to isolated vacuoles of protoplasts from Calendula officinalis leaves, Phytochemistry 31:2993–2997.CrossRefGoogle Scholar
- Keller, F., 1986, Gentiopicroside is located in the vacuoles of root protoplasts of Gentiana luteaJ. Plant Physiol. 122:473–476.CrossRefGoogle Scholar
- Keller, F., and Matile, P., 1985, The role of the vacuole in storage and mobilization of stachyose in tubers of Stachys sieboldii, J. Plant Physiol. 119:369–380.CrossRefGoogle Scholar
- Keller, F., and Wiemken, A., 1982, Differential compartmentation of sucrose and gentianose in the cytosol and vacuoles of storage root protoplasts from Gentiana lutea, Plant Cell Rep. 1:274–277.CrossRefGoogle Scholar
- Kojima, M., Poulton, J. E., Thayer, S., and Conn, E. E., 1979, Tissue distribution of dhurrin and of enzymes involved in its metabolism in leaves of Sorghum bicolor, Plant Physiol. 63:1022–1028.PubMedCrossRefGoogle Scholar
- Kreis, W., and Reinhard, E., 1987, Selective uptake and vacuolar storage of primary cardiac glycosides by suspension-cultured Digitalis lanata cells, J. Plant Physiol. 128:311–326.CrossRefGoogle Scholar
- Kurkdjian, A., 1982, Absorption and accumulation of nicotine by Acer pseudoplatanus and Nicotiana tabacum cells, Physiol. Veg. 20:73–83.Google Scholar
- Lange, H., and Kohlenbach, H. W., 1982, Differentiation of alkaloid cells in cultures of Macleaya mesophyll protoplasts, Planta Med. 46:78–81.CrossRefGoogle Scholar
- Leigh, R. A., and Walker, R. R., 1980, ATPase and acid phosphatase activities associated with vacuoles isolated from storage roots of red beet, Planta 150:222–229.CrossRefGoogle Scholar
- Leigh, R. A., Ahmad, N., and Wyn Jones, R. G., 1981, Assessment of glycine, betaine and proline compartmentation by analysis of isolated beet vacuoles, Planta 153:34–41.CrossRefGoogle Scholar
- Li, Z.-S., Zhao, Y., and Rea, P.A., 1995, Magnesium adenosine 5′-triphosphate-energized transport of glutathione-S-conjugates by plant vacuolar membrane vesicles, Plant Physiol. 107:1257–1268.PubMedGoogle Scholar
- Löffelhardt, W., Kopp, B., and Kubleka, W., 1979, Intracellular distribution of cardiac glycosides in leaves of Convallaria majalis, Phytochemistry 18:1289–1291.CrossRefGoogle Scholar
- Lüthy, B., and Matile, P., 1984, The mustard oil bomb: Rectified analysis of the subcellular organization of the myrosinase system, Biochem. Physiol. Pflanz. 179:5–12.Google Scholar
- Lüttge, U., Smith, J. A. C., Mango, G., and Osmond, C. B., 1981, Energetics of malate accumulation in the vacuoles of Kalanchoe tubiflora cells, FEBS Lett. 126:81–84.CrossRefGoogle Scholar
- McCaskill, D. G., Martin, D. L., and Scott, A. I., 1988, Characterization of alkaloid uptake by Catharanthus roseus (L.) G. Don protoplasts, Plant Physiol. 87:402–408.PubMedCrossRefGoogle Scholar
- McHale, D., 1986, The cinchona tree, Biologist 33:45–53.Google Scholar
- Mackenbrock, U., Vogelsang, R., and Barz, W, 1992, Isoflavone and pterocarpan malonylglucosides and β-1,3-glucan- and chitin-hydrolases are vacuolar constituents in chickpea (Cicer arietinum L.), Z. Naturforsch. 47c:815–822.Google Scholar
- Marrs, K. A., Alfenito, M. R., Lloyd, A. M., and Walbot, V., 1995, A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2, Nature 375:397–400.PubMedCrossRefGoogle Scholar
- Martinoia, E., Flügge, U. I., Kaiser, G., Heber, U., and Heldt, H. W., 1985, Energy-dependent uptake of malate into vacuoles isolated from barley mesophyll protoplasts, Biochim. Biophys. Acta 806:311–319.CrossRefGoogle Scholar
- Martinoia, E., Vogt, E., Rentsch, D., and Amrhein, N., 1991, Functional reconstitution of the malate carrier of barley mesophyll vacuoles in liposomes, Biochim. Biophys. Acta 1062:271–278.PubMedCrossRefGoogle Scholar
- Martinoia, E., Grill, E., Tommasini, R., Kreuz, K., and Amrhein, N., 1993, ATP-dependent glutathione-S conjugate export pump in the vacuolar membrane of plants, Nature 364:247–249.CrossRefGoogle Scholar
- Matern, U., Heller, W., and Himmelspach, K., 1983, Conformational changes of apigenin-7–0-(6–0-malonylglycoside), a vacuolar pigment from parsley, with solvent composition and proton concentration, Eur. J. Biochem. 133:439–448.PubMedCrossRefGoogle Scholar
- Matern, U., Reichenbach, C., and Heller, W., 1986, Efficient uptake of flavonoids into parsley (Petroselinum hortense) vacuoles requires acylated glycosides, Planta 167:183–189.CrossRefGoogle Scholar
- Matile, P., 1980, The mustard oil bomb: Compartmentation of myrosinase systems, Biochem. Physiol. Pflanz. 175:722–731.Google Scholar
- Matile, P., Jans, B., and Rickenbacher, R., 1970, Vacuoles of Chelidonium latex: lysosomal property and accumulation of alkaloids, Biochem. Physiol. Pflanz. 161:447–458.Google Scholar
- Matoh, T., Watanabe, J., and Takahashi, E., 1987, Sodium, potassium, chloride, and betaine concentrations in isolated vacuoles from salt-grown Atriplex gmelini leaves, Plant Physiol. 84:173–177.PubMedCrossRefGoogle Scholar
- Mende, P., and Wink, M., 1987, Uptake of the quinolizidine alkaloid lupanine by protoplasts and vacuoles of Lupinus polyphyllus cell suspension cultures, J. Plant Physiol. 129:229–242.CrossRefGoogle Scholar
- Nishimura, M., 1982, pH in vacuoles isolated from castor bean endosperm, Plant Physiol. 70:742–744.PubMedCrossRefGoogle Scholar
- Nissen, P., 1991, Multiphasic uptake mechanisms in plants, Int. Rev. Cytol. 126:89–134.CrossRefGoogle Scholar
- Oba, K., Conn, E., Canut, H., and Boudet, A. M., 1981, Subcellular localization of 2-(βD-glucosyloxy-)cinnamic acids and the related β-glucosidase in leaves of Melilotus alba, Plant Physiol. 68:1359–1363.CrossRefGoogle Scholar
- Pasquali, G., Goddijn, O. J. M., DeWaal, A., Verpoorte, R., Schilperoort, R. A., Hoge, J. H. C., and Memlelink, J., 1992, Coordinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors, Plant Mol. Biol. 18:1121–1131.PubMedCrossRefGoogle Scholar
- Pham, T. D. T., and Roberts, M. F., 1991, Quantitative characterization of the contents of Papaver somniferum latex vacuoles, Phytochem. Anal. 2:68–73.CrossRefGoogle Scholar
- Pistocchi, R., Keller, F., Bagni, N., and Matile, P., 1988, Transport and subcellular localisation of polyamines in carrot protoplasts and vacuoles, Plant Physiol. 87:514–518.PubMedCrossRefGoogle Scholar
- Pradier, J. M., Barbier-Brygoo, H., Ephitikhine, G., and Guern, J., 1988, Interaction of an alkaloid, serpentine, with tonoplast vacuoles from Catharanthus roseus G. Don., C. R. Acad. Sci. Ser. 3, 306:283–289.Google Scholar
- Rataboul, P., Alibert, G., Boller, T., and Boudet, A.M., 1985, Intracellular transport and vacuolar accumulation of o-coumaric acid glucoside in Melilotus alba mesophyll cell protoplasts, Biochim. Biophys. Acta 816:25–36.CrossRefGoogle Scholar
- Rea, P., and Sanders, D., 1987, Tonoplast energizations: Two H-pumps, one membrane, Physiol. Plant. 71:131–141.CrossRefGoogle Scholar
- Renaudin, J.P., 1989, Different mechanisms control the vacuolar compartmentation of ajmalicine in Catharanthus roseus cell cultures, Plant Physiol. Biochem. (Paris) 27:613–621.Google Scholar
- Renaudin, J. P., and Guern, J., 1987, Ajmalicine transport into vacuoles isolated from Catharanthus roseus, in: Plant Vacuoles, Vol. 134, NATO ASI Series (B. Marin, ed.), Plenum Press, New York, pp. 339–347.CrossRefGoogle Scholar
- Riesmeier, J. W., Willmitzer, L., and Frommer, W. B., 1992, Isolation and characterisation of a sucrose carrier cDNA from spinach by functional expression in yeast, EMBO J. 11:4705–4713.PubMedGoogle Scholar
- Roberts, M. F., 1981, Enzymic synthesis of coniceine in Conium maculatum chloroplasts and mitochondria, Plant Cell Rep. 1:10–13.CrossRefGoogle Scholar
- Roberts, M. F., 1987, Papaver latex and alkaloid storage vacuoles, in: Plant Vacuoles, Vol. 134, NATO ASI Series (B. Marin, ed.), Plenum Press, New York, pp. 513–528.CrossRefGoogle Scholar
- Roberts, M. F., and Waller, G. R., 1978, N-methyl transferases and 7-methyl-N-nucleoside hydrolase activity in Coffea arabica and the synthesis of caffeine, Phytochemistry 18:451–455.CrossRefGoogle Scholar
- Roberts, M. F., Homeyer, B. C., and Pham, T. D. T., 1991, Further studies of sequestration of alkaloids in Papaver somniferum latex vacuoles, Z. Naturforsch. 46c:377–388.Google Scholar
- Saftner, R. A., 1994, Stereoselectivity and structural determinants in molecular recognition by the ACC transport system in isolated maize mesophyll vacuoles, Physiol. Plant. 92:543–554.CrossRefGoogle Scholar
- Sato, H., Kobayashi, Y., Fukui, H., and Tabata, M., 1990, Specific differences in tolerance to exogenous berberine among plant cell cultures, Plant Cell Rep. 9:133–136.CrossRefGoogle Scholar
- Sato, H., Taguchi, G., Fukui, H., and Tabata, M., 1992, Role of malic acid in solubilizing excess berberine accumulating in vacuoles of Coptis japonica, Phytochemistry 31:3451–3454.CrossRefGoogle Scholar
- Sato, H., Tanaka, S., and Tabata, M., 1993, Kinetics of alkaloid uptake by cultured cells of Coptis japonicaPhytochemistry 34:697–701.CrossRefGoogle Scholar
- Sato, H., Tanaka, T., Tanaka, S., and Tabata, M., 1994, Binding of berberine to a membrane fraction from Coptis cells, Phytochemistry 36:1363–1367.CrossRefGoogle Scholar
- Sauer, N., and Tanner, W., 1989, The hexose carrier from Chlorella: cDNA cloning of a eukaryotic H-cotransporter, FEBS Lett. 259:43–46.PubMedCrossRefGoogle Scholar
- Saunders, G. A., 1979, Investigations of vacuoles isolated from tobacco. I. Quantification of nicotine, Plant Physiol. 64:74–78.PubMedCrossRefGoogle Scholar
- Saunders, G. A., and Conn, E. E., 1978, Presence of the cyanogenic glycoside dhurrin in isolated vacuoles from Sorghum, Plant Physiol. 61:154–157.CrossRefGoogle Scholar
- Schnabl, H., Weissenböck, G., and Scharf, H., 1986, In vivo microspectrophotometric characterization of flavonol glycosides in Vicia faba guard and epidermal cells, J. Exp. Bot. 37:61–72.CrossRefGoogle Scholar
- Sharma, V., and Strack, D., 1985, Vacuolar localisation of 1-sinapoyl glucose:L-malate sinapoyltransferase in protoplasts from cotyledons of Raphanus sativus, Planta 163:563–568.CrossRefGoogle Scholar
- Szakiel, A., and Janiszowska, W., 1991, The effect of pH and ATP on the transport of oleanolic acid monoglycosides into isolated vacuoles of Calendula officinalis leaves, Acta Biochim. Pol. 38:47–51.PubMedGoogle Scholar
- Szakiel, A., and Janiszowska, W., 1992, Competition between oleanolic acid glycosides in their transport to isolated vacuoles from Calendula officinalis leaf protoplasts, Acta Biochim. Pol. 39:107–112.PubMedGoogle Scholar
- Szakiel, A., and Janiszowska, W., 1993, The kinetics of transport of oleanolic acid monoglycosides into vacuoles isolated from Calendula officinalis leaf protoplasts, Acta Biochim. Pol. 40:136–138.PubMedGoogle Scholar
- Szakiel, A., and Kasprzyk, Z., 1989, Distribution of oleanolic acid glycosides in vacuoles and cell walls isolated from protoplasts and cells of Calendula officinalis leaves, Steroids 53:501–511.PubMedCrossRefGoogle Scholar
- Taneyama, M., 1992, Studies on C-glycosides in higher plants. IV Intracellular distribution of bergenin and related compounds in Saxifraga stolonifera leaves, Bot. Mag.RR, Tokyo 105:565–571.CrossRefGoogle Scholar
- Thorn, M., and Komor, E., 1984, H-sugar antiport as the mechanism of sugar uptake by sugar cane vacuoles, FEBS Lett. 173:1–4.CrossRefGoogle Scholar
- Thorn, M., and Komor, E., 1985, Electrogenic proton translocation by the ATPase of sugarcane vacuoles, Plant Physiol. 77:329–334.CrossRefGoogle Scholar
- Thume, M., and Dietz, K.-H., 1991, Reconstitution of the tonoplast amino-acid carrier into liposomes, Planta 185:569–575.CrossRefGoogle Scholar
- Tommasini, R., Martinoia, E., Grill, E., Dietz, K.J.,, and Amrhein, N 1993, Transport of oxidised glutathione into barley vacuoles: Evidence for the involvement of the glutathione-S-conjugate ATPase, Z. Naturforsch. 48c:868–871.Google Scholar
- Tsay, Y.-F., Schroeder, J., Feldmann, K. A., and Crawford, N. M., 1993, The herbicide sensitivity gene CHL1 of Aribidopsis encodes a nitrate—inducible nitrate transporter, Cell 72:705–713.PubMedCrossRefGoogle Scholar
- Urban, B., Laudenbach, U., and Kesselmeier, J., 1983, Saponin distribution in the etiolated leaf tissue and subcellular localization of steroidal saponins in etiolated protoplasts of oat, Avena sativa, Protoplasma 118:121–123.CrossRefGoogle Scholar
- Van Genderen, H. H., and Van Hemert, J., 1986, Sites of flavone accumulation in some genotypes of Silene pratensis (Rafn.) Godron et Gren. (Caryophyllaceae), New Phytol. 104:33–39.CrossRefGoogle Scholar
- Verzar-Petri, G. K., Czedo, H., Mollmann, K., Szendrei, K., and Reisch, J., 1976, Fluoreszenzmikroskopische Untersuchungen ueber die Lokalisierung von Acridon-Alkaloiden in Geweben von Ruta graveolens, Planta Med. 29:370–375.CrossRefGoogle Scholar
- Wajant, H., Riedel, D., Benz, S., and Mundry, K.-W., 1995, Immunocytological localization of hydroxynitrile lyases from Sorghum bicolor L., and Linum usitatissimum L. Plant Sci. 103:145–154.CrossRefGoogle Scholar
- Waldhauser, S. S. M., and Baumann, T. W., 1996, Compartmentation of caffeine and related purine alkaloids depends exclusively on the physical chemistry of their vacuoles complex formation with chlorogenic acid, Photochemistry 42:985–996.CrossRefGoogle Scholar
- Wei, X., Roomans, G. M., Seveus, L., and Pihakaski, K., 1981, Localization of glucosinolates in roots of Sinapis alba using x-ray microanalysis, Scanning Electron Microsc. 2:481–488.Google Scholar
- Weißenböeck, G., Hedrich, R., and Sachs, G., 1986, Secondary phenolic products in isolated guard cell, epidermal cell and mesophyll cell protoplasts from pea (Pisum sativum L.) leaves: Distribution and determination, Protoplasma 134:141–148.CrossRefGoogle Scholar
- Werner, C., and Matile, P., 1985, Accumulation of coumaroylglucosides in vacuoles of barley mesophyll protoplasts, J. Plant Physiol. 118:237–249.PubMedCrossRefGoogle Scholar
- Wink, M., 1984, N-Methylation of quinolizidine alkaloids: An S-adenosyl-L-methionine: cytisine N-methyltransferase from Laburnum anagyroides plants and cell cultures of L. alpinum and Cytisus canariensisPlanta 161:339–344.CrossRefGoogle Scholar
- Wink, M., 1985, Chemische Verteidigung der Lupinen: Zur biologischen Bedeutung der Chinolizidinalkaloide, Plant Sys. Evol. 150:65–81.CrossRefGoogle Scholar
- Wink, M., 1987b, Site of lupanine and sparteine biosynthesis in intact plants and in vitro organ cultures, Z Naturforsch. 42c:868–872.Google Scholar
- Wink, M., 1992, The role of quinolizidine alkaloids in plant-insect interactions, in: Insect-Plant Interactions, Vol. 4 (E. A. Bernays, ed.), CRC Press, Boca Raton, pp. 131–166.Google Scholar
- Wink, M., and Hartmann, T., 1982a, Localisation of the enzymes of quinolizidine alkaloid biosynthesis in leaf chloroplasts of Lupinus polyphyllusPlant Physiol. 70:74–77.PubMedCrossRefGoogle Scholar
- Wink, M., and Hartmann, T., 1982b, Enzymatic synthesis of quinolizidine alkaloid esters: A tigloyl-CoA: 13-hydroxylupanine O-tigloyltransferase from Lupinus albus L., Planta 156:560–565.CrossRefGoogle Scholar
- Wink, M., and Mende, P., 1987). Uptake of lupanine by alkaloid-storing epidermal cells of Lupinus polyphyllusPlanta Med. 53:465–469.PubMedCrossRefGoogle Scholar
- Wink, M., and Witte, L., 1984, Turnover and transport of quinolizidine alkaloids: Diurnal variation of lupanine in the phloem sap, leaves and fruits of Lupinus albus L., Planta 161:519–524.CrossRefGoogle Scholar
- Wink, M., and Witte, L., 1985, Quinolizidine alkaloids as nitrogen source for lupin seedlings and cell cultures, Z. Naturforsch. 40c:767–775.Google Scholar
- Yoder, L. R., and Marlberg, P. G., 1976, Reactions of alkaloid and histochemical indicators in laticifers and specialised parenchyma cells of Catharanthus roseus (Apocynaceae), Am. J. Bot. 63:1167–1173.CrossRefGoogle Scholar