Shortcomings of MRP II and a New Planning Meta—Method

  • Alf Kimms
  • Andreas Drexl
Part of the Applied Optimization book series (APOP, volume 16)

Abstract

Lot sizing when done for the short-term heavily interacts with the sequencing decisions for the operations to be performed. Especially for real-world situations where capacities are scarce, demand is dynamic, and precedence relations among the operations have to be taken into account the MRP II logic which is implemented in most production planning systems does not satisfy. In this paper, we will reveal the shortcomings of MRP II by means of an example. A mixed-integer programming model is then defined to specify the problem of capacitated, dynamic, multi-level lot sizing and scheduling. Also, we present a generic solution method (a so-called meta-method) which may be used as a basis of more advanced implementations that may replace the traditional MRP II systems.

Keywords

Schedule Problem Lead Time Production Planning Setup Cost Precedence Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    American Production and Inventory Control Society Inc., 1995, MRP II Software/Vendor Directory, APICS — The Performance Advantage, 9, 3848.Google Scholar
  2. [2]
    American Production and Inventory Control Society Inc., 1995, MRP II Software/Vendor Directory Addendum, APICS — The Performance Advantage, 11, 54–56.Google Scholar
  3. [3]
    G.R. Bitran and H. Matsuo, 1986, Approximation Formulations for the Single–Product Capacitated Lot Size Problem, Operations Research, 34, 63–74.CrossRefGoogle Scholar
  4. [4]
    M. Diaby, H.C. Bahl, M.H. Karwan, and S. Zionts, 1992, A Lagrangean Relaxation Approach for Very–Large–Scale Capacitated Lot–Sizing, Management Science, 38, 1329–1340.CrossRefGoogle Scholar
  5. [5]
    W. Dinkelbach, 1964, Zum Problem der Produktionsplanung in Ein — und Mehrproduktunternehmen, Würzburg, Physica, 2nd edition.Google Scholar
  6. [6]
    A. Drexl, B. Fleischmann, H.O. Günther, H. Stadtler, and H. Tempelmeier, 1994, Konzeptionelle Grundlagen kapazitätsorientierter PPS—Systeme, Zeitschrift für betriebswirtschaftliche Forschung, 46, 1022–1045.Google Scholar
  7. [7]
    A. Drexl and K. Haase, 1995, Proportional Lotsizing and Scheduling, International Journal of Production Economics, 40, 73–87.CrossRefGoogle Scholar
  8. [8]
    A. Drexl, K. Haase, and A. Kimms, 1995, Losgrössen— und Ablaufplanung in PPS—Systemen auf der Basis rando misierter Opportunitätskosten, Zeitschrift für Betriebswirtschaft, 65, 267–285.Google Scholar
  9. [9]
    A. Drexl and A. Kimms, 1996, Lot Sizing and Scheduling: Survey and Extensions, European Journal of Operational Research, to appear.Google Scholar
  10. [10]
    G.D. Eppen and R.K. Martin, 1987, Solving Multi—Item Capacitated Lot—Sizing Problems Using Variable Redefinition, Operations Research, 35, 83 2848.Google Scholar
  11. [11]
    B. Fleischmann, 1988, Operations—Research- Modelle und —Verfahren in der Produktionsplanung, Zeitschrift für betriebswirtschaftliche Forschung, 58, 347–372.Google Scholar
  12. [12]
    B. Fleischmann, 1990, The Discrete Lot—Sizing and Scheduling Problem, European Journal of Operational Research, 44, 337–348.CrossRefGoogle Scholar
  13. [13]
    K. Haase, 1993, Capacitated Lot—Sizing with Linked Production Quantities of Adjacent Periods, Working Paper 334, University of Kiel.Google Scholar
  14. [14]
    K. Haase, 1994, Lotsizing and Scheduling for Production Planning, Lecture Notes in Economics and Mathematical Systems, 408, Berlin, Springer.CrossRefGoogle Scholar
  15. [15]
    K. Haase and A. Kimms, 1996, Lot Sizing and Scheduling with Sequence Dependent Setup Costs and Times and Efficient Rescheduling Opportunities, Working Paper 393, University of Kiel.Google Scholar
  16. [16]
    K.S. Hindi, 1996, Solving the CLSP by a Tabu Search Heuristic, Journal of the Operational Research Society, 47, 151–161.Google Scholar
  17. [17]
    S. van Hoesel and A. Kolen, 1994, A Linear Description of the Discrete Lot—Sizing and Scheduling Problem, European Journal of Operational Research, 75, 342–353.CrossRefGoogle Scholar
  18. [18]
    U.S. Karmarkar, S. Kekre, and S. Kekre, 1987, The Deterministic Lotsizing Problem with Startup and Reservation Costs, Operations Research, 35, 389–398.CrossRefGoogle Scholar
  19. [19]
    U.S. Karmarkar and L. Schrage, 1985, The Deterministic Dynamic Product Cycling Problem, Operations Research, 33, 326–345.CrossRefGoogle Scholar
  20. [20]
    A. Kimms, 1993, A Cellular Automaton Based Heuristic for Multi–Level Lot Sizing and Scheduling, Working Paper 331, University of Kiel.Google Scholar
  21. [21]
    A. Kimms, 1994, Optimal Multi–Level Lot Sizing and Scheduling with Dedicated Machines, Working Paper 351, University of Kiel.Google Scholar
  22. [22]
    A. Kimms, 1994, Demand Shuffle — A Method for Multi–Level Proportional Lot Sizing and Scheduling, Naval Research Logistics, to appear.Google Scholar
  23. [23]
    A. Kimms, 1996, Multi–Level, Single–Machine Lot Sizing and Scheduling (with Initial Inventory), European Journal of Operational Research, 89, 86–99.Google Scholar
  24. [24]
    A. Kimms, 1996, Competitive Methods for Multi–Level Lot Sizing and Scheduling: Tabu Search and Randomized Regrets, International Journal of Production Research, 34, 2279–2298.CrossRefGoogle Scholar
  25. [25]
    A. Kimms, 1997, Multi–Level Lot Sizing and Scheduling — Methods for Capacitated, Dynamic, and Deterministic Models, Heidelberg, Physica.Google Scholar
  26. [26]
    O. Kirca and M. Kökten, 1994, A New Heuristic Approach for the Multi–Item Dynamic Lot Sizing Problem, European Journal of Operational Research, 75, 332–341.CrossRefGoogle Scholar
  27. [27]
    L.S. Lasdon and R.C. Terjung, 1971, An Efficient Algorithm for Multi–Item Scheduling, Operations Research, 19, 946–969.CrossRefGoogle Scholar
  28. [28]
    V. Lotfi and W.H. Chen, 1991, An Optimal Algorithm for the Multi–Item Capacitated Production Planning Problem, European Journal of Operational Research, 52, 179–193.CrossRefGoogle Scholar
  29. [29]
    J. Maes and L.N. van Wassenhove, 1988, Multi–Item Single–Level Capacitated Dynamic Lot–Sizing Heuristics: A General Review, Journal of the Operational Research Society, 39, 991–1004.Google Scholar
  30. [30]
    M. Salomon, L.G. Kroon, R. Kuik, and L.N. van Wassenhove, 1991, Some Extensions of the Discrete Lotsizing and Scheduling Problem, Management Science, 37, 801–812.CrossRefGoogle Scholar
  31. [31]
    V. Söhner and C. Schneeweiss, 1995, Hierarchically Integrated Lot Size Optimization, European Journal of Operational Research, 86, 73–90.CrossRefGoogle Scholar
  32. [32]
    H. Stadtler, 1988, Hierarchische Produktionsplanung bei losweiser Fertigung, Heidelberg, Physica.Google Scholar
  33. [33]
    M. Switalski, 1989, Hierarchische Produktionsplanung - — Konzeption und Einsatzbereich, Heidelberg, Physica.Google Scholar
  34. [34]
    A. Vazsonyi, 1958, Scientific Programming in Business and Industry, New York, Wiley.Google Scholar
  35. [35]
    A. Villa, 1989, Decision Architectures for Production Planning in Multi—Stage Multi—Product Manufacturing Systems, Annals of Operations Research, 17, 51–68.CrossRefGoogle Scholar
  36. [36]
    G. Zäpfel and H. Missbauer, 1993, New Concepts for Production Planning and Control, European Journal of Operational Research, 67, 297–320.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Alf Kimms
    • 1
  • Andreas Drexl
    • 1
  1. 1.Lehrstuhl für Produktion und Logistik Institut für BetriebswirtschaftslehreChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations