Vitamin D pp 17-37 | Cite as

Photobiology of Vitamin D

  • Tai C. Chen
Chapter
Part of the Nutrition and Health book series (NH)

Abstract

Vitamin D is one of the four fat-soluble vitamins that have been recognized to possess important biologic functions. The major physiologic effect of vitamin D is on calcium and bone metabolism, by maintaining extracellular concentrations of calcium and phosphorus within the normal range (1–3). During the past three decades, intensive research on vitamin D has revealed that it is a hormone and not a vitamin. Once vitamin D is formed in the skin, it requires two sequential hydroxylation reactions, first in the liver to form 25-hydroxyvitamin D (25-OH-D), and then in the kidneys to form 1,25-dihydroxyvitamin D [1,25(OH)2D]. It is 1,25(OH)2D that is responsible for enhancing the efficiency of intestinal absorption of dietary calcium and phosphorus, as well as the mobilization of calcium and phosphorus stores from bone (1–3). In addition, 1,25(OH)2D has other biologic actions in many tissues or cells that possess the 1,25(OH)2D receptor, including enhancement of cellular differentiation and/or inhibition of cellular proliferation in cultured fibroblasts and keratinocytes (2).

Keywords

Human Skin Polar Bear Sunlight Exposure Cutaneous Production Melanin Pigmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DeLuca HF. The metabolism, physiology, and function of vitamin D. In: Vitamin D, Basic and Clinical Aspects. Kumar R, ed. Boston: Nijhoff Publishing, 1984; 259–302.Google Scholar
  2. 2.
    Holick MF. Photobiology, metabolism, and clinical applications. In: Endocrinology, 3rd ed. DeGroot LJ, ed. Philadelphia: WB Saunders, 1995; 990–1013.Google Scholar
  3. 3.
    Reichel H, Koeffler HP, Norman AW. The role of the vitamin D endocrine system in health and disease. N Engl J Med 1989; 320: 981–991.CrossRefGoogle Scholar
  4. 4.
    Mozolowski W. Jedrzej Sniadecki (1768–1883) on the cure of rickets. Nature 1939; 143: 121.CrossRefGoogle Scholar
  5. 5.
    Palm TA. The geographic distribution and etiology of rickets. Practitioner 1890; 45: 270–279, 321–342.Google Scholar
  6. 6.
    Holick MF. Vitamin D and the skin• photobiology, physiology and therapeutic efficacy for psoriasis. In: Bone and Mineral Research, vol 7. Heersche JNM, Kanis JA, eds. Amsterdam: Elsevier, 1990: 313–366.Google Scholar
  7. 7.
    Mellanby T. The part played by an `accessory factor’ in the production of experimental rickets. J Physiol 1918; 52: 11–14.Google Scholar
  8. 8.
    McCollum EF, Simmonds N, Becker JE, Shipley PG. Studies on experimental rickets and experimental demonstration of the existence of a vitamin which promotes calcium deposition. J Biol Chem 1922; 53: 293–312.Google Scholar
  9. 9.
    Huldschinsky K. Heilung von Rachitis durch kunstliche Honensonne. Dtsch Med Wochenschr 1919; 45: 712, 713.Google Scholar
  10. 10.
    Hess AF, Unger LJ. Cure of infantile rickets by sunlight. JAMA 1921; 77: 39–43.Google Scholar
  11. 11.
    Goldblatt H, Soames KN. A study of rats on a normal diet irradiated daily by the mercury vapor quartz lamp or kept in darkness. Biochem J 1924; 17: 294–297.Google Scholar
  12. 12.
    Goldblatt H. A study of the relation of the quantity of fat-soluble organic factor in the diet to the degree of calcification of the bones and the development of experimental rickets in rats. Biochem J 1924; 17: 298–326.Google Scholar
  13. 13.
    Hess AF, Weinstock M. Antirachitic properties imparted to inert fluids and green vegetables by ultraviolet irradiation. J Biol Chem 1924; 62: 301–313.Google Scholar
  14. 14.
    Steenbock H, Black A. The induction of growth-promoting and calcifying properties in a ration by exposure to ultraviolet light. J Biol Chem 1924; 61: 408–422.Google Scholar
  15. 15.
    Steenbock H. The induction of growth-promoting and calcifying properties in a ration by exposure to light. Science 1924; 60: 224–225.PubMedCrossRefGoogle Scholar
  16. 16.
    Stamp TC, Walker PG, Perry W, Jenkins, MV. Nutritional osteomalacia and late rickets in greater London, 1974–1979: clinical and metabolic studies in 45 patients. Clin Endocrinol Metab 1980; 9: 81–105.PubMedCrossRefGoogle Scholar
  17. 17.
    Marksted T, Halvorsen S, Halvorsen KS et al. Plasma concentrations of vitamin D metabolites before and during treatment of vitamin D deficiency rickets in children. Acta Paediatr Scand 1984; 73: 225–231.CrossRefGoogle Scholar
  18. 18.
    Tanner JT, Smith J, Defibaugh P et al. Survey of vitamin content of fortified milk. J Assoc Off Anal Chem 1988; 71: 607–610.PubMedGoogle Scholar
  19. 19.
    Holick MF, Shao Q, Liu WW, Chen TC. The vitamin D content of fortified milk and infant formula. N Engl J Med 1992; 326: 1178–1181.PubMedCrossRefGoogle Scholar
  20. 20.
    Chen TC, Shao Q, Heath H, Holick MF. An update on the vitamin D content of fortified milk from the United states and Canada. N Engl J Med 1993; 329: 1507.PubMedCrossRefGoogle Scholar
  21. 21.
    Fieser LD, Fieser M. Vitamin D In: Steroids. New York: Reinhold, 1959; 90–168.Google Scholar
  22. 22.
    Windaus A, Bock F. Uber das provitamin aus dem sterin der schweineschwarte. Hoppe-Seylers Z Physiol Chem 1937; 245: 168–170.CrossRefGoogle Scholar
  23. 23.
    Rauschkolb EW, Winston D, Fenimore DC, Black HS, Fabre LF. Identification of vitamin D3 in human skin. J Invest Dermatol 1969; 53: 289–293.PubMedGoogle Scholar
  24. 24.
    Okano T, Yasumura M, Mizuno K, Kobayashi T. Photochemical conversion of 7-dehydrocholesterol into vitamin D3 in rat skins. J Nutr Sci Vitaminol (Tokyo) 1977; 23: 165–168.CrossRefGoogle Scholar
  25. 25.
    Esvelt RR, Schnoes HK, DeLuca HF. Vitamin D3 from rat skins irradiated in vitro with ultraviolet light. Arch Biochem Biophys 1978; 188: 282–286.PubMedCrossRefGoogle Scholar
  26. 26.
    Pask-Hughes PA, Calam DH. Determination of vitamin D3 in cod-liver oil by high performance liquid chromatography. J Chromatogr 1982; 246: 95–104.PubMedCrossRefGoogle Scholar
  27. 27.
    Muller-Mulot VW, Rohrer G, Schwarzbauer K. Zur auffindung naturilich vorkommender vitamin D3-ester im lebertran chemische bestimmung des freien, verester-ten and gesamt-vitamin D3. Fette Seifen Anstrichm 1979; 81: 38–40.CrossRefGoogle Scholar
  28. 28.
    St Lezin MA. Phylogenetic occurence of vitamin D and provitamin D sterols. MS dissertation. Cambridge, MA: MIT Press, 1983.Google Scholar
  29. 29.
    Koch EM, Koch FC. The provitamin D of the covering tissues of chickens. J Poult Sci 1941; 20: 33–35.CrossRefGoogle Scholar
  30. 30.
    Wheatley RH, Sher DW. Studies of the lipids of dog skin. J Invest Dermatol 1969; 36: 169–170.Google Scholar
  31. 31.
    Kenny DE, Irlbeck NA, Chen TC, Lu Z, Holick MF. Determination of vitamins D, A and E in sera and vitamin D in milk from captive and free-ranging polar bears (Ursus maritimus) and 7-dehydrocholesterol levels in skin from captive polar bears. 1998, submitted.Google Scholar
  32. 32.
    Morris JG. Ineffective vitamin D synthesis of vitamin D in kittens exposed to sun and ultraviolet light is reversed by an inhibitor of 7-dehydrocholesterol-A7-reductase. In: Proceedings of the Tenth Workshop on Vitamin D, Strasbourg, France, May 24–29, 1997. Norman AW, Bouillon R, Thomasset M, eds. University of California Press, Riverside, CA. 1997; 721–722.Google Scholar
  33. 33.
    Velluz L, Petit A, Amiard G. Sur un stage non photochimique dans la formation des calciferols: essais d’interpretation. Bull Soc Chim Fr 1948; 15: 1115–1120.Google Scholar
  34. 34.
    Velluz L, Amiard G, Petit A. Le precalciferol-ses relations d’equilibre avec le calciferol. Bull Soc Chim Fr 1949; 16: 501–508.Google Scholar
  35. 35.
    Holick MF, MacLaughlin JA, Clark MB, Holick SA, Potts JT Jr, Anderson RR, Blank IH, Parrish JA, Elias P. Photosynthesis of vitamin D3 in human skin and its physiologic consequences. Science 1980; 210: 203–205.PubMedCrossRefGoogle Scholar
  36. 36.
    Bunker JWM, Harris RS, Mosher ML. Relative efficiency of active wavelengths of ultraviolet light in activation of 7-dehydrocholesterol. J Am Chem Soc 1940; 62: 508–511.CrossRefGoogle Scholar
  37. 37.
    Kobayashi T, Yasumara M. Studies on the ultraviolet irradiation of previtamin D and its related compounds. Effect of wavelength on the formation of potential vitamin D2 in the irradiation of ergosterol by monochromatic ultraviolet rays. J Nutr Sci Vitam 1973; 119: 123–128.CrossRefGoogle Scholar
  38. 38.
    MacLaughlin JA, Anderson RR, Holick MF. Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photoisomers in human skin. Science 1982; 216: 1001–1003.PubMedCrossRefGoogle Scholar
  39. 39.
    Anderson RR, Parrish JA. Optical properties of human skin. In:. The Science of Photomedicine. Regan JD, Parrish JA, eds. New York: Plenum, 1982; 147–194.Google Scholar
  40. 40.
    MacLaughlin JA, Holick MF. Photobiology of vitamin D in the skin. In: Biochemistry and Physiology of the Skin. Goldsmith LA, ed. New York: Oxford University Press, 1983; 734–754.Google Scholar
  41. 41.
    Havinga E. Vitamin D, example and challenge. Experientia 1973; 29: 1181–1193.PubMedCrossRefGoogle Scholar
  42. 42.
    Woodward RB, Hoffmann R. Selection rules for sigmatropic reactions. J Am Chem Soc 1965; 87: 2511–2513.CrossRefGoogle Scholar
  43. 43.
    Hanewald KH, Rappoldt MP, Roborgh X Jr. Antirachitic activity of previtamin D3. Recl Tray Chim Pays-Bas Belg 1961; 80: 1003–1014.CrossRefGoogle Scholar
  44. 44.
    Tian XQ, Chen TC, Matsuoka LY, Wortsman J, Holick MF. Kinetic and thermodynamic studies of the conversion of previtamin D3 to vitamin D3 in human skin. J Biol Chem 1993; 268:14, 888–14, 892.Google Scholar
  45. 45.
    Tian XQ, Chen TC, Lu Z, Shao Q, Holick MF. Characterization of the translocation process of vitamin D3 from the skin into the circulation. Endocrinology 1994; 135: 655–661.PubMedCrossRefGoogle Scholar
  46. 46.
    Holick MF, Tian XQ, Allen M. Evolutionary importance for the membrane enhancement of the production of vitamin D3 in the skin of poikilothermic animals. Proc Nat ’ Acad Sci USA 1995; 92: 3124–3126.CrossRefGoogle Scholar
  47. 47.
    Tian X, Holick MF. Catalyzed thermal isomerization between previtamin D3 and vitamin D3 via (3cyclodextrin complexation. J Biol Chem 1995; 270: 8706–8711.PubMedCrossRefGoogle Scholar
  48. 48.
    Albers E, Muller BW. Complexation of steroid hormones with cyclodextrin derivatives: substituent effects of the guest molecule on solubility and stability in aqueous solution. Pharm Sci 1992; 81: 756–761.CrossRefGoogle Scholar
  49. 49.
    Chen ET, Pardue HL. Analytical applications of catalytic properties of modified cyclodextrins. Anal Chem 1993; 65: 2563–2567.PubMedCrossRefGoogle Scholar
  50. 50.
    Bogoslovsky NA, Kurganov BI, Samochvalova NG, Isaeva TA, Sugrobova NP, Gurevich VM, Valashek IE, Samochvalov GI. Vitamin D: Molecular, Cellular and Clinical Endocrinology. Berlin: Walter de Gruyter, 1988; 1021–1023.Google Scholar
  51. 51.
    Haddad JG, Matsuoko LY, Hollis BW, Hu YZ, Wortsman, J. Human plasma transport of vitamin D after its endogenous synthesis. J Clin Invest 1993; 91: 2552–2555.PubMedCrossRefGoogle Scholar
  52. 52.
    Clemens TL, Henderson SL, Adams JS Holick, MF. Increased skin pigment reduces the capacity of skin to synthesize vitamin D3. Lancet 1982; January 9: 74–76.Google Scholar
  53. 53.
    Lo C, Paris PW, Holick MF. Indian and Pakistani immigrants have the same capacity as Caucasians to produce vitamin D in response to ultraviolet irradiation. Am J Clin Nutr 1986; 44: 683–685.PubMedGoogle Scholar
  54. 54.
    Loomis, F. Skin-pigment regulation of vitamin D biosynthesis in man. Science 1967; 157: 501–506.PubMedCrossRefGoogle Scholar
  55. 55.
    Webb AR, de Costa B, Holick MF. Sunlight regulates the cutaneous production of vitamin D3 by causing its photodegradation. J Clin Endocrinol Metab 1989; 68: 882–887.PubMedCrossRefGoogle Scholar
  56. 56.
    Kassowitz M. Tetanie and autointoxication in kindersalter. Wien Med Presse 1897; 97: 139–141.Google Scholar
  57. 57.
    Schmorl G. Die Pathologigische Anatomie de Rachitischen Knochenerkrankung mit Besonderer ber Ucksichtigung imer Histologie and Pathogenese. Ergeb Inn Med Kinderheilkd 1909; IV: 403.Google Scholar
  58. 58.
    Hansemann D. Veber den Einfluss der Domestikation auf die Entstehung der Krankheiten. Berl Klin Wochenschr 1906; 629: 670.Google Scholar
  59. 59.
    Matsuoko LY, Wortsman J, Dannenberg MJ, Hollis B, Lu Z, Holick MF. Clothing prevents ultraviolet-B radiation-dependent photosynthesis of vitamin D3. J Clin Endocrinol Metab 1992; 75: 1099–1103.CrossRefGoogle Scholar
  60. 60.
    Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab 1988; 67: 373–378.PubMedCrossRefGoogle Scholar
  61. 61.
    Lu Z, Chen TC, Holick MF. Influence of season and time of day on the synthesis of vitamin D3. In: Biological Effects of Light. Holick MF, Kligman AM, eds. Berlin: Walter de Gruyter, 1992; 57–61.Google Scholar
  62. 62.
    Ladizesky M, Lu Z, Oliver B, Roman NS, Diaz S, Holick MF, Mautalen C. Solar ultraviolet B radiation and photoproduction of vitamin D3 in Central and Southern areas of Argentina. J Bone Miner Res 1995; 10: 545–549.PubMedCrossRefGoogle Scholar
  63. 63.
    Fitzpatrick TB. The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol 1988; 124: 869–871.PubMedCrossRefGoogle Scholar
  64. 64.
    Ala-Houhala M, Parviainen MT, Pyykko K, Visakorpi JK. Serum 25-hydroxyvitamin D levels in Finnish children aged 2–17 years. Acta Paediatr Scand 1984; 73: 232–236.PubMedCrossRefGoogle Scholar
  65. 65.
    Oliveri MB, Ladizesky M, Mautalen CA, Alonso A, Martinez L. Seasonal variations of 25-hydroxyvitamin D and parathyroid hormone in Ushuaia (Argentina), the southernmost city of the world. Bone Miner 1993; 20: 99–108.PubMedCrossRefGoogle Scholar
  66. 66.
    Sherman SS, Hollis BW, Tobin JD. Vitamin D status and related parameters in a healthy population: the effects of age, sex and season. J Clin Endocrinol Metab 1990; 71: 405–413.PubMedCrossRefGoogle Scholar
  67. 67.
    Lester E, Skinner RK, Wills MR. Seasonal variation in serum 25-hydroxyvitamin D in the elderly in Britain. Lancet 1977; 1: 979–980.PubMedCrossRefGoogle Scholar
  68. 68.
    Holick MF, MacLaughlin JA, Dopplet SH. Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an essential regulator. Science 1981; 211: 590–593.PubMedCrossRefGoogle Scholar
  69. 69.
    Chalmers J, Conacher DH, Gardner DL, Scott PJ. Osteomalacia-a common disease in elderly women. J Bone Joint Surg [Br] 1967; 49B: 403–423.Google Scholar
  70. 70.
    Chapuy MC, Arlot ME, Duboeuf F, Brun J, Crouzet B, Arnaud S, Delmas PD, Meunier PJ. Vitamin D3 and calcium to prevent hip fractures in elderly women. N Engl J Med 1992; 327: 1637–1642.PubMedCrossRefGoogle Scholar
  71. 71.
    Dawson-Hughes B, Dallal GE, Krall EA, Harris S, Sokoll LJ, Falconer G. Effect of vitamin D supplementation on wintertime and overall bone loss in healthy postmenopausal women. Ann Intern Med 1991; 115: 505–512.PubMedGoogle Scholar
  72. 72.
    Rosen CJ, Morrison A, Zhou H, Storm D, Hunter SJ, Musgrave K, Chen TC, Liu WW, Holick MF. Elderly women in northern New England exhibit seasonal changes in bone mineral density and calciotropic hormones. Bone Miner 1994; 25: 83–92.PubMedCrossRefGoogle Scholar
  73. 73.
    Jenkins DH, Roberts JG, Webster D, Williams EO. Osteomalacia in elderly patients with fracture of the femoral neck. J Bone Joint Surg [Br] 1973; 55B: 575–580.Google Scholar
  74. 74.
    Doppelt SH, Neer RM, Daly M, Bourret L, Schiller A, Holick MF. Vitamin D deficiency and osteomalacia in patients with hip fractures. Orthop Trans 1983; 7: 512–513.Google Scholar
  75. 75.
    Sokoloff L. Occult osteomalacia in American patients with fracture of the hip. Am J Surg Pathol 1978; 2: 21–30.PubMedCrossRefGoogle Scholar
  76. 76.
    Whitelaw GP, Abramowitz AJ, Kavookjian H, Holick MF. Fractures and vitamin D deficiency in the elderly. Complications Ortho 1991; 6: 70–80.Google Scholar
  77. 77.
    Omdahl JL,Garry PJ, Hunsaker LA, Junt WC, Goodwin JS. Nutritional status in a healthy elderly population: vitamin D. Am J Clin Nutr 1982; 36: 1225–1233.PubMedGoogle Scholar
  78. 78.
    Lamberg-Allard T. Vitamin D intake, sunlight exposure, and 25-hydroxyvitamin D levels in elderly during one year. Ann Nutr Met 1984; 28: 144–150.CrossRefGoogle Scholar
  79. 79.
    Webb AR, Pilbeam C, Hanafin N, Holick MF. An evaluation of the relative contributions of exposure to sunlight and diet on the circulating concentrations of 25-hydroxyvitamin D in an elderly nursing home population in Boston. Am J Clin Nutr 1990; 51: 1075–1081.PubMedGoogle Scholar
  80. 80.
    Tan CY, Strathum B, Marks R. Skin thickness measurement by pulsed ultrasound: its reproducibility, validation and variability. Br J Dermatol 1982; 106: 657–667.PubMedGoogle Scholar
  81. 81.
    MacLaughlin JA, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest 1985; 76: 1536–1538.PubMedCrossRefGoogle Scholar
  82. 82.
    Holick MF, Matsuoka LY, Wortsman J. Age, vitamin D, and solar ultraviolet radiation. Lancet 1989; November 4: 1104, 1105.Google Scholar
  83. 83.
    Matsuoko L, Ide L, Wortsman J, MacLaughlin JA, Holick MF. Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab 1987; 64: 1165–1168.CrossRefGoogle Scholar
  84. 84.
    Matsuoko LY, Wortsman J, Hanifan N, Holick MF. Chronic sunscreen use decreases circulating concentrations of 25-hydroxyvitamin D• a preliminary study. Arch Dermatol 1988; 124: 1802–1804.CrossRefGoogle Scholar
  85. 85.
    Robson J, Diffey BL. Textiles and sun protection. Photodermatol Photoimmunol Photomed 1990; 7: 32–34.PubMedGoogle Scholar
  86. 86.
    Annan T. Thomas Annan’s Photographs of the Old Closes and Streets of Glasgow 1868/1877. New York: Dover, 1977.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Tai C. Chen

There are no affiliations available

Personalised recommendations