Structure and Function of the Pro- and Pre-B-Cell Receptors on B-Lymphoid Lineage Precursor Cells

  • Thomas H. Winkler
  • Fritz Melchers
Chapter
Part of the Contemporary Immunology book series (CONTIM)

Abstract

B lymphocytes develop from hematopoietic stem cells. In mouse and in man, B lymphocyte development takes place first during embryogenesis—mainly in the fetal liver and then during postnatal life in the bone marrow (1–5). The development from progenitor (pro) and precursor (pre) B-cells to immature and mature B lymphocytes is characterized by proliferation, differentiation, and ordered rearrangements of immunoglo-bulin (Ig) heavy (H) and light (L) chain genes. As for the other hematopoietic lineages few lineage-committed progenitor cells give rise to large numbers of mature effector cells.

Keywords

Light Chain Mouse Bone Marrow Chain Locus Light Chain Gene Allelic Exclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hardy, R. R., Carmack, C. E., Shinton, S. A., Kemp, J. D., and Hayakawa, K. (1991) Resolution and characterization of pro—B and pre—pro—B cell stages in normal mouse bone marrow. J. Exp. Med. 173, 1213–1225.PubMedCrossRefGoogle Scholar
  2. 2.
    Ogawa, M., Nishikawa, S., Ikuta, K., Yamamura, F., Naito, M., Takahashi, K., and Nishikawa, S. I. (1988) B cell ontogeny in murine embryo studied by a culture system with the monolayer of a stromal cell clone, ST-2, B cell progenitor develops first in the embryonal body rather than in the yolk sac. EMBO J. 7, 1337–1343.Google Scholar
  3. 3.
    Osmond, D. G. (1986) Population dynamics of bone marrow B lymphocytes. Immunol. Rev. 93, 103–133.PubMedCrossRefGoogle Scholar
  4. 4.
    Owen, J. J. T., Raff, M. C., and Cooper, M. D. (1975) Studies on the generation of B lymphocytes in the mouse embryo. Eur. J. Immunol. 5, 468–473.Google Scholar
  5. 5.
    Rolink, A and Melchers, F. (1991) Molecular and cellular origins of B lymphocyte diversity. Cell 66, 1081–1094.PubMedCrossRefGoogle Scholar
  6. 6.
    Nadler, L. M., Anderson, K. C., Marti, G., Batyes, M., Park, E., Daley, J. F., and Schlossman, S. F. (1983) B4, a human B lymphocyte—associated antigen expressed on normal, mitogenactivated, and malignant B lymphocytes. J. Immunol. 131, 244–250.PubMedGoogle Scholar
  7. 7.
    Rolink, A., ten Boekel, E., Melchers, F., Fearon, D. T., Krop, I., and Andersson, J. (1996) A subpopulation of B220+ cells in murine bone marrow does not express CD(19 and contains natural killer cell progenitors. J. Exp. Med. 183, 187–194.Google Scholar
  8. 8.
    Coffman, R. L. and Weissman, I. L. (1981) A monoclonal antibody that recognizes B cells and B cell precursors in mice. J. Exp. Med. 153, 269–279.PubMedCrossRefGoogle Scholar
  9. 9.
    Osmond, D. G. (1991) Proliferation kinetics and the lifespan of B cells in central and peripheral lymphoid organs. Curr. Opin. Immunol. 3 179–185.Google Scholar
  10. 10.
    Tsubata, T. and Nishikawa, S.—I. (1991) Molecular and cellular aspects of early B—cell development. Curr. Opin. Immunol. 3, 186–192.PubMedCrossRefGoogle Scholar
  11. 11.
    Rolink, A., Grawunder, U., Winkler, T. H., Karasuyama, H., and Melchers, F. (1994) IL-2 receptor a chain (CD25, TAC) expression defines a crucial stage in pre—B cell development. Int. Immunol. 6, 1257–1264.Google Scholar
  12. 12.
    Banchereau, J. B. and Rousset, F. (1992) Human B lymphocytes: phenotype, proliferation and differentiation. Adv. Immunol. 52, 125–262.PubMedCrossRefGoogle Scholar
  13. 13.
    Burrows, P. D. and Cooper, M. D. (1993) B—cell development in man. Curr. Opin. Immunol. 5, 201–206.PubMedCrossRefGoogle Scholar
  14. 14.
    LeBien, T. W., Wormann, B., Villablanca, J. G., Law, C. L., Steinberg, L. M., Shah, V. O., and Loken, M. R. (1990) Multiparameter flow cytometric analysis of human fetal bone marrow B cells. Leukemia 4, 354–358.PubMedGoogle Scholar
  15. 15.
    Rolink, A., Karasuyama, H., Haasner, D., Grawunder, U., Martensson, I. L., Kudo, A., and Melchers, F. ( 1994. Two pathways of B-lymphocyte development in mouse bone marrow and the roles of surrogate L chain in this development. Immunol. Rev. 137, 185–201.PubMedCrossRefGoogle Scholar
  16. 16.
    Kudo, A. and Melchers, F. (1987) A second gene, VpreB in the lambda 5 locus of the mouse, which appears to be selectively expressed in pre-B lymphocytes. EMBO J. 6, 2267–2272.PubMedGoogle Scholar
  17. 17.
    Sakaguchi, N. and Melchers, F. (1986) Lambda 5, a new light-chain-related locus selectively expressed in pre-B lymphocytes. Nature 324, 579–582.PubMedCrossRefGoogle Scholar
  18. 18.
    Karasuyama, H., Rolink, A., and Melchers, F. (1993) A complex of glycoproteins is associated with VpreB/lambda 5 surrogate light chain on the surface of g heavy chain-negative early precursor B cell lines. J. Exp. Med. 178, 469–478.PubMedCrossRefGoogle Scholar
  19. 19.
    Shinjo, F., Hardy, R. R., and Jongstra, J. (1994) Monoclonal anti-X5 antibody FS1 identifies a 130 kDa protein associated with X5 and Vpre-B on the surface of early pre-B cell lines. Intern. Immunol. 6, 393–399.CrossRefGoogle Scholar
  20. 20.
    Karasuyama, H., Kudo, A., and Melchers, F. (1990) The proteins encoded by Vpre-B and X5 pre-B cell-specific genes can associate with each other and with.t heavy chains. J. Exp. Med. 172, 969–972.PubMedCrossRefGoogle Scholar
  21. 21.
    Kerr, W. G., M. D. Cooper, L. Feng, P. D. Burrows, and L. M. Hendershot. ( 1989. Mu heavy chain can associate with a pseudo-light chain complex (wL) in human pre-B cells “in vitro.” Proc. Natl. Acad. Sci. USA 85, 4473–4477.Google Scholar
  22. 22.
    Pillai, S. and Baltimore, D. (1987) Formation of disulphide-linked µ2w2 tetramers in pre-B cells by the 18K w-immunoglobulin light chain. Nature 329, 172–174.PubMedCrossRefGoogle Scholar
  23. 23.
    Tsubata, T. and Reth, M. (1990) The products of pre-B cell-specific genes (15 and VpreB) and the immunoglobulin µ chain form a complex that is transported onto the cell surface. J. Exp. Med. 172, 973–976.PubMedCrossRefGoogle Scholar
  24. 24.
    Hombach, J. Tsubata, T., Leclercq, L., Stappert, H., and Reth, M. (1990) Molecular components of the B-cell antigen receptor complex of the IgM class. Nature 343 760–762.Google Scholar
  25. 25.
    Kudo, A., Pravtcheva, D., Sakaguchi, N., Ruddle, F. H., and Melchers, F. (1987) Localization of the murine X5 gene on chromsome 16. Genomics 1, 277–279.Google Scholar
  26. 26.
    Mattei, M. G., Fumoux, F., Roeckel, N., Fougereau, M., and Schiff, C. (1991) The human preB-specific lambda-like cluster is located in the 22g11.2 22g12.3 region, distal to the IgC lambda locus. Genomics 9, 544–546.PubMedCrossRefGoogle Scholar
  27. 27.
    Shirasawa, T., Ohnishi, K., Hagiwara, S., Shigemoto, K., Takebe, Y., Rajewsky, K., and Takemori, T. (1993) A novel gene product associated with mu chains in immature B cells. EMBO J. 12, 1827–1834.PubMedGoogle Scholar
  28. 28.
    Ohnishi, K. and Takemori, T. (1994) Molecular components and assembly of g-surrogate light chain complexes in pre-B cell lines. J. Biol. Chem. 269, 28,347–28, 353.Google Scholar
  29. 29.
    Bauer, S. R., Huebner, K., Budarf, M., Finan, J., Erikson, J., Emanuel, B. S., Nowell, P. C., Croce, C. M., and Melchers, F. (1988) The human VpreB gene is located on chromosome 22 near a cluster of Vß,1 gene segments. Immunogenetics 28, 328–333.PubMedCrossRefGoogle Scholar
  30. 30.
    Bauer, S. R., Kudo, A., and Melchers, F. (1988) Structure and pre-B lymphocyte restricted expression of the VpreB gene in humans and conservation of its structure in other mammalian species. EMBO J. 7, 111–116.Google Scholar
  31. 31.
    Chang, H., Dmitrovsky, E., Hieter, P., Mitchell, Leder, P., Turoczi, L., Kirsch, I., and Hollis, G. (1986) Identification of three new Ig X-like genes in man. J. Exp. Med. 163, 425–435.Google Scholar
  32. 32.
    Evans, R. J. and Hollis, G. F. (1991) Genomic structure of the human Ig lambda 1 gene suggests that it may be expressed as an Ig lambda 14.1-like protein or as a canonical B cell Ig lambda light chain, implications for Ig lambda gene evolution. J. Exp. Med. 173, 305–311.PubMedCrossRefGoogle Scholar
  33. 33.
    Hollis, G. F., Evans, R. J., Stafford-Hollis, J. M., Korsmeyer, S. J., and McKearn, J. P. (1989) Immunoglobulin X light chain-related genes 14.1 and 16.1 are expressed in pre-B cells and may encode the human immunoglobulin co light chain protein. Proc. Natl. Acad. Sci. USA 86, 5552–5556.PubMedCrossRefGoogle Scholar
  34. 34.
    Schiff, C., Bensmana, M., Guglielmi, P., Milili, M., Lefranc, M. P., and Fougereau, M. (1990) The immunoglobulin lambda-like gene cluster (14.1, 16.1 and F lambda 1) contains gene(s) selectively expressed in pre-B cells and is the human counterpart of the mouse lambda 5 gene. Int. Immunol. 2, 201–207.Google Scholar
  35. 35.
    Dul, J. L., Argon, Y., Winkler, T. H., ten Boekel, E., Melchers, F., and Martensson, I. L. (1996) The murine VpreB 1 and VpreB2 genes both encode a VpreB protein of the surrogate light chain and are co-expressed during B cell development. Eur. J. Immunol. 26, 906–913.Google Scholar
  36. 36.
    Kudo, A., Thalmann, P., Sakaguchi, N., Davidson, W. F., Pierce, J. H., Kearney, J. F., Reth, M., Rolink, A., and Melchers, F. (1992) The expression of the mouse VpreB/lambda 5 locus in transformed cell lines and tumors of the B lineage differentiation pathway. Int. Immunol. 4, 831–840.PubMedCrossRefGoogle Scholar
  37. 37.
    Holmes, K. L., Pierce, J. H., Davidson, W. F., and Morse, H. C. I. (1986) Murine hematopoietic cells with pre B/myeloid characteristics are generated by in vitro transformation with retroviruses containing res, ras, abl and src oncogenes. J. Exp. Med. 164, 443.Google Scholar
  38. 38.
    Reth, M., Ammirati, P., Jackson, S., and Alt, F. (1985) Regulated progression of a cultured preB cell to the Bell stage. Nature 317, 353–355PubMedCrossRefGoogle Scholar
  39. 39.
    Bauer, S. R., Kubagawa, H., MacLennan, I., and Melchers, F. (1991) VpreB gene expression in hematopoietic malignancies: a lineage— and stage—restricted marker for B cell precursor leukemias. Blood 78, 1581–1588.PubMedGoogle Scholar
  40. 40.
    Donohoe, M. E. and Blomberg, B. B. (1997) The 14.1 surrogate light chain promoter has lineage— and stage—restricted activity. J. Immunol. 158, 1681–1691.PubMedGoogle Scholar
  41. 41.
    Kudo, A., Bauer, S. R., and Melchers, F. (1989) Structure, control of expression and putative function of the pre—B cell—specific genes VpreB and lambda 5. Prog. Immunol. 7, 339–347.CrossRefGoogle Scholar
  42. 42.
    Lo, K., Landau, N. R., and Smale, S. T. (1991) LyF-1, a transcriptional regulator that interacts with a novel class of promoters for lymphocyte—specific genes. Mol. Cell. Biol. 11, 5229–5243.PubMedGoogle Scholar
  43. 43.
    Allen, J. M., Forbush, K. A., and Perlmutter, R. M. (1992) Functional dissection of the lck promotor. Mol. Cell. Biol. 12, 2758–2768.PubMedGoogle Scholar
  44. 44.
    Fehling, H. J., Laplace, C., Mattei, M. G., Saint Ruf, C., and von Boehmer, H. (1995) Genomic structure and chromosomal location of the mouse pre—T—cell receptor alpha gene. 42, 275–281.Google Scholar
  45. 45.
    Mârtensson, I.—L. and Melchers, F. (1994) Pre—B cell specific X5 gene expression due to suppression in non pre—B cells. Int. Immunol. 6, 863–872.PubMedCrossRefGoogle Scholar
  46. 46.
    Yang, J., Glozak, M. A., and Blomberg, B. B. (1995) Identification and localization of a developmentally stage—specific promoter activity from the murine lambda 5 gene. J. Immunol. 155, 2498–2514.PubMedGoogle Scholar
  47. 47.
    Mârtensson, I.—L. and Mârtensson, A. (1997) Early B cell factor binds to a site critical for X5 core enhancer activity. Eur. J. Immunol. 27, 315–320.PubMedCrossRefGoogle Scholar
  48. 48.
    Mârtensson, I.—L., Melchers, F., and Winkler, T. H. (1997) A transgenic marker for mouse B lymphoid precursors. J. Exp. Med. 185, 653–662.PubMedCrossRefGoogle Scholar
  49. 49.
    Guelpa—Fonlupt, V., Tonnelle, C., Blaise, D., Fougereau, M., and Fumoux, F. (1994) Discrete early pro—B and pre—B stages in normal human bone marrow as defined by surface pseudo—light chain expression. Eur. J. Immunol. 24, 257–264.CrossRefGoogle Scholar
  50. 50.
    Lassoued, K., Nunez, C., Billips, L., Kubagawa, H., Monteiro, R. C., Le Bien, T. W., and Cooper, M. D. (1993) Expression of surrogate light chain receptors is restricted to a late stage in pre B cell differentiation. Cell 73, 73–86.PubMedCrossRefGoogle Scholar
  51. 51.
    Tsubata, T., Tsubata, R., and Reth, M. (1991) Cell surface expression of the short immunoglobulin µ chain (131.1—protein) in murine pre—B cells is differently regulated from that of the intact.t chain. Eur. J. Immunol. 21, 1359–1363.PubMedCrossRefGoogle Scholar
  52. 52.
    Bergman, Y., Haimovich, J., and Melchers, F. (1977) An IgM producing tumor with biochemical characteristics of a small B lymphocyte. Eur. J. Immunol. 8, 574–581.CrossRefGoogle Scholar
  53. 53.
    Cherayil, B. J. and Pillai, S. (1991) The co/A,5—surrogate immunoglobulin light chain is expressed on the surface of transitional B lymphocytes in murine bone marrow. J. Exp. Med. 173, 111–116.PubMedCrossRefGoogle Scholar
  54. 54.
    Rolink, A., Karasuyama, H., Grawunder, U., Haasner, D., Kudo, A., and Melchers, F. (1993) B cell development in mice with a defective lambda 5 gene. Eur. J. Immunol. 23, 1284–1288.Google Scholar
  55. 55.
    Karasuyama, H., Rolink, A., Shinkai, Y., Young, F., Alt, F. W., and Melchers, F. (1994) The expression of Vpre—B/lambda 5 surrogate light chain in early bone marrow precursor B cells of normal and B cell—deficient mutant mice. Cell 77, 133–143.PubMedCrossRefGoogle Scholar
  56. 56.
    Winkler, T. H., Rolink, A., Melchers, F., and Karasuyama, H. (1995) PrecursorB cells of mouse bone marrow express two different complexes with the surrogate light chain on the surface. Eur. J. Immunol. 25, 446–450.PubMedCrossRefGoogle Scholar
  57. 57.
    Ten Boekel, E., Melchers, F., and Rolink, A. (1995) The status of Ig loci rearrangements in single cells from different stages of B cell development. Intern. Immunol. 7, 1013–1019.CrossRefGoogle Scholar
  58. 58.
    Meffre, E., Fougereau, M., Argenson, J. N., Aubaniac, J. M., and Schiff, C. (1996) Cell surface expression of surrogate light chain (psi L) in the absence of mu on human pro-B cell lines and normal pro-B cells. Eur. J. Immunol. 26, 2172–2180.PubMedCrossRefGoogle Scholar
  59. 59.
    Sanz, E. and de la Hera, A. (1996) A novel anti-Vpre-B antibody identifies imunoglobulinsurrogate receptors on the surface of human pro-B cells. J. Exp. Med. 183, 2693–2698.PubMedCrossRefGoogle Scholar
  60. 60.
    Ghia, P., ten Boekel, E., Sanz, E., de la Hera, A., Rolink, A., and Melchers, F. (1996) Ordering of human bone marrow B lymphocyte precursors by single-cell polymerase chain reaction analyses of the rearrangement status of the immunoglobulin H and L chain gene loci. J. Exp. Med. 184, 2217–2229.PubMedCrossRefGoogle Scholar
  61. 61.
    Grawunder, U., Leu, T. M. J., Schatz, D. G., Werner, A., Rolink, A. G., Melchers, F., and Winkler, T. H. (1995) Downregulation of RAG1 and RAG2 gene expression in preB cells after functional immunoglobulin heavy chain rearrangement. Immunity 3, 601–608.PubMedCrossRefGoogle Scholar
  62. 62.
    Kitamura, D., Kudo, A., Schaal, S., Muller, W., Melchers, F., and Rajewsky, K. (1992) A critical role of X5 protein in B cell development. Cell 69, 823–831.PubMedCrossRefGoogle Scholar
  63. 63.
    Gong, S. and Nussenzweig, M. C. (1996) Regulation of an early developmental checkpoint in the B cell pathway by Ig beta. Science 272, 411–414.PubMedCrossRefGoogle Scholar
  64. 64.
    Reichmann-Fried, M., Hardy, R. R., and Bosma, M. J. (1990) Development of B lineage cells in the bone marrow of scid/scid mice following the introduction of functionally rearranged immunoglobulin transgenes. Proc. Natl. Acad. Sci. USA 87, 2730–2734.CrossRefGoogle Scholar
  65. 65.
    Mombaerts, P., Iacomini, J., Johnson, R. S., Herrup, K., Tonegawa, S., and Papaioannou, V. E. (1992) RAG-1 deficient mice have no mature B and T lymphocytes. Cell 68, 869–877.PubMedCrossRefGoogle Scholar
  66. 66.
    Shinkai, Y., Rathbun, G., Lam, K. P., Oltz, E. M., Stewart, V., Mendelsohn, M., Charron, J., Delta, M., Young, F., Stahl, A., and Alt, F. W. (1992) RAG-2 deficient mice lack mature lymphocytes owing to inability fo initiate V(D)J rearrangement. Cell 68, 855–867.PubMedCrossRefGoogle Scholar
  67. 67.
    Spanopoulou, E., Roman, C. A., Corcoran, L. M., Schlissel, M. S., Silver, D. P., Nemazee, D., Nussenzweig, M. C., Shinton, S. A., Hardy, R. R., and Baltimore, D. (1994) Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-l-deficient mice. Genes Dey. 8, 1030–1042.CrossRefGoogle Scholar
  68. 68.
    Young, F., Ardman, B., Shinkai, Y., Lansford, R., Blackwell, T. K., Mendelsohn, M., Rolink, A., Melchers, F., and Alt, F. W. (1994) Influence of immunoglobulin heavy-and light-chain expression on B-cell differentiation. Genes Dey. 8, 1043–1057.CrossRefGoogle Scholar
  69. 69.
    Kitamura, D., Roes, J., Kuhn, R., and Raj ewsky, K. (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350, 423–426.PubMedCrossRefGoogle Scholar
  70. 70.
    Ehlich, A., Schaal, S., Gu, H., Kitamura, D., Muller, W., and Rajewsky, K. (1993) Immunoglobulin heavy and light chain genes rearrange independently at early stages of B cell development. Cell 72, 695–704.PubMedCrossRefGoogle Scholar
  71. 71.
    Keyna, U., Beck-Engeser, G. B., Jongstra, J., Applequist, S. E., and Jäck, H.-M. (1995) Surrogate light chain-dependent selection of Ig heavy chain V regions. J. Immunol. 155, 5536–5542.PubMedGoogle Scholar
  72. 72.
    Decker, D. J., Boyle, N. E., Koziol, J. A., and Klinman, N. R. (1991) The expression of the Ig H chain repertoire in developing bone marrow B lineage cells. J. Immunol. B 350–361.Google Scholar
  73. 73.
    Ehlich, A., Martin, V., Müller, W., and Rajewsky, K. (1994) Analysis of the B-cell progenitor compartment at the level of single cells. Curr. Biol. 4, 573–583.PubMedCrossRefGoogle Scholar
  74. 74.
    Fang, W., Mueller, D. L., Pennel, C. A., Rivard, J. J., Li, Y. S., Hardy, R. R., Schlissel, M. S., and Behrens, T. W. (1996) Frequent aberrant immunoglobulin rearrangements in pro-B cells revealed by a bcl-xL transgene. Immunity 4, 291–299.Google Scholar
  75. 75.
    Papavasiliou, F., Jankovic, M., and Nussenzweig, M. C. (1996) Surrogate or conventional light chains are required for membrane immunoglobulin mu to activate the precursor B cell transition. J. Exp. Med. 184, 2025–2030.PubMedCrossRefGoogle Scholar
  76. 76.
    Pelanda, R. Schaal, S., Torres, R. M., and Rajewsky, K. (1996) A prematurely expressed Igx transgene, but not a VKJK gene segment targeted into the Igx locus, can rescue B cell development in X5-deficient mice. Immunity 5 229–239.Google Scholar
  77. 77.
    Alt, F. W., Yancoupoulos, G. D., Blackwell, T. K., Wood, C., Thomas, E., Boss, M., Coffman, R., Rosenberg, N., Tonegawa, S., and Baltimore, D. (1984) Ordered rearrangement of immunoglobulin heavy chain variable region segments. EMBO J. 3, 1209–1219.PubMedGoogle Scholar
  78. 78.
    Weaver, D., Constantini, F., Imanishi-Kari, T., and Baltimore, D. (1985) A transgenic immunoglobulin Is gene prevents rearrangement of endogenous genes. Cell 42, 117–127.Google Scholar
  79. 79.
    Kitamura, D. and Rajewsky, K. (1992) Targeted disruption of li-chain membrane exon causes loss of heavy-chain allelic exclusion. Nature 356, 154–156.PubMedCrossRefGoogle Scholar
  80. 80.
    Constantinescu, A. and Schlissel, M. S. (1997) Changes in Locus-specific V(D)J recombinase activity induced by immunoglobulin gene products during B cell development. J. Exp. Med. 185, 609–620.PubMedCrossRefGoogle Scholar
  81. 81.
    Lin, W.-C. and Desiderio, S. (1994) Cell cycle regulation of V(D)J recombination-activating protein RAG-2. Proc. Natl. Acad. Sci. USA 91, 2733–2737.PubMedCrossRefGoogle Scholar
  82. 82.
    Lin, W.-C. and Desiderio, S. (1993) Regulation of V(D)J recombination activator protein RAG-2 by phosphorylation. Science 260, 953–959.PubMedCrossRefGoogle Scholar
  83. 83.
    Alt, F. W., Oltz, E. M., Young, F., Gorman, J., Taccioli, G., and Chen, J. (1992) VDJ recombination. Immunol. Today 13, 306–314.PubMedCrossRefGoogle Scholar
  84. 84.
    Stanhope-Baker, P. Hudson, K. M., Shaffer, A. L., Constantinescu, A., and Schlissel, M. S. (1996) Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell 85 887–897.Google Scholar
  85. 85.
    Löffert, D., Ehlich, A., Müller, W., and Rajewsky, K. (1996) Surrogate light chain expression is required to establish immunoglobulin heavy chain allelic exclusion during early B cell development. Immunity 4, 133–144.PubMedCrossRefGoogle Scholar
  86. 86.
    Sonoda, E., Pewzner-Jung, J., Schwers, S., Taki, S., Jung, S., Eilat, D., and Rajewsky, K. (1997) B cell development under the condition of allelic inclusion. Immunity 6, 225–233.PubMedCrossRefGoogle Scholar
  87. 87.
    Wabl, M. and Steinberg, C. (1982) A theory of allelic and isotypic exclusion for immunoglobulin genes. Proc. Natl. Acad. Sci. USA 79, 6976–6978.PubMedCrossRefGoogle Scholar
  88. 88.
    Freitas, A. A., Andrade, L., Lembezat, M. P., and Coutinho, A. (1990) Selection of VH gene repertoires: differentiating B cells of adult bone marrow mimic fetal development. Int. Immunol. 2, 15–23.PubMedCrossRefGoogle Scholar
  89. 89.
    Gu, H. Tarlinton, D., Müller, W., Rajewsky, K., and Förster, I. (1991) Most peripheral B cells in mice are ligand-selected. J. Exp. Med. 173 1357–1371.Google Scholar
  90. 90.
    Malynn, B. A., Yancopoulos, G. D., Barth, J. E., Bona, C. A., and Alt, F. W. (1990) Biased expression of Jh-proximal VH genes occurs in the newly generated repertoire of neonatal and adult mice. J. Exp. Med. 171, 843–859.PubMedCrossRefGoogle Scholar
  91. 91.
    Decker, D. J., Boyle, N. E., and Klinman, N. R. (1991) Predominance of nonproductive rearrangements of VH81X gene segments evidences a dependence of B cell clonal maturation on the structure of nascent H chains. J. Immunol. 147, 1406–1411.PubMedGoogle Scholar
  92. 92.
    Huetz, F., Carlsson, L., Tornberg, U. C., and Holmberg, D. (1993) V-region directed selection in differentiating B lymphocytes. EMBO J. 12, 1819–1826.PubMedGoogle Scholar
  93. 93.
    Yancopoulos, G. D., Desiderio, S. V., Paskind, M., Kearney, J. F., Baltimore, D., and Alt, F. W. (1984) Preferential utilization of the most DH-proximal VH gene segments in pre-B cell lines. Nature 311, 727–733.PubMedCrossRefGoogle Scholar
  94. 94.
    Carlsson, L., Övermo, C., and Holmberg, D. (1992) Developmentally controlled selection of antibody genes, characterization of individual VH7183 genes and evidence for stage-specific somatic diversification. Eur. J. Immunol. 22, 71–78.PubMedCrossRefGoogle Scholar
  95. 95.
    Marshall, A. J., Wu, G. E., and Paige, C. J. (1996) Frequency of VH81X usage during B cell development. J. Immunol. 156, 2077–2084.PubMedGoogle Scholar
  96. 96.
    Martin, F., Chen, X., and Kearney, J. F. (1997) Development of VH81X transgene-bearing B cells in fetus and adult, site for expansion and deletion in conventional and CD5/B1 cells. Int. Immunol. 9, 493–505.PubMedCrossRefGoogle Scholar
  97. 97.
    Ye, J., McCray, S. K., and Clarke, S. H. (1996) The transition of preB-I to preB-II cells is dependent on the VH structure of the µ/surrogate L chain receptor. EMBO J. 15, 1524–1533.PubMedGoogle Scholar
  98. 98.
    Chen, J., Ma, A., Young, F., and Alt, F. W. (1994) IL-2 receptor a chain expression during early B lymphocyte differentiation. Int. Immunol. 6, 1265–1268.PubMedCrossRefGoogle Scholar
  99. 99.
    Grawunder, U., Rolink, A., and Melchers, F. (1995) Induction of sterile transcription from the kappa L chain gene locus in V(D)J recombinase-deficient progenitor B cells. Int. Immunol. 7, 1915–1925.PubMedCrossRefGoogle Scholar
  100. 100.
    Papavasiliou, F., Jancovic, M., Suh, H., and Nussenzweig, M. C. (1995) The cytoplasmic domains of immunoglobulin (Ig) alpha and Ig beta can independently induce the precursor B cell transition and allelic exclusion. J. Exp. Med. 182, 1389–1394.PubMedCrossRefGoogle Scholar
  101. 101.
    Papavasiliou, F., Misulovin, Z., Suh, H., and Nussenzweig, M. C. (1995) The role of Ig beta in precursor B cell transition and allelic exclusion. Science 268, 408–411.PubMedCrossRefGoogle Scholar
  102. 102.
    Torres, R. M., Flaswinkel, H., Reth, M., and Rajewsky, K. (1996) Aberrant B cell development and immune response in mice with a compromised BCR complex. Science 272, 1804–1808.PubMedCrossRefGoogle Scholar
  103. 103.
    Reth, M. (1989) Antigen receptor tail clue. Nature 338, 383–384.PubMedCrossRefGoogle Scholar
  104. 104.
    Satterwaite, A. and Witte, O. (1996) Genetic analysis of tyrosine kinase function in B cell development. Ann. Rev. Immunol. 14, 131–154.Google Scholar
  105. 105.
    Cheng, A. M., Rowley, B., Pao, W., Hayday, A., Bolen, J. B., and Pawson, T. (1995) Syk tyrosine kinase required for mouse viability and B—cell development. Nature 378, 303–306.PubMedCrossRefGoogle Scholar
  106. 106.
    Turner, M., Mee, P. J., Costello, P. S., Williams, O., Price, A. A., Duddy, L. P., Furlong, M. T., Geahlen, R. L., and Tybulewicz, V. L. (1995) Perinatal lethality and blocked B—cell development in mice lacking the tyrosine kinase Syk. Nature 378, 298–302.PubMedCrossRefGoogle Scholar
  107. 107.
    Hirabayashi, Y., Lecerf, J. M., Dong, Z., and Stollar, B. D. (1995) Kinetic analysis of the interactions of recombinant human VpreB and Ig V domains. J. Immunol. 155, 1218–1228.PubMedGoogle Scholar
  108. 108.
    Fehling, H. J. and von Boehmer, H. (1997) Early aß T cell development in the thymus of normal and genetically altered mice. Curr. Opin. Immunol. 9, 263–275.PubMedCrossRefGoogle Scholar
  109. 109.
    Padlan, E. A. (1977) Structural basis for the specificity of antibody—antigen reactions and structural mechanisms for the diversification of antigen—binding specificities. Q. Rev. Biophys. 10, 35–65.PubMedCrossRefGoogle Scholar
  110. 110.
    Klein, J. (1990) Immunology. Blackwell Scientific, Oxford, pp. 136.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Thomas H. Winkler
  • Fritz Melchers

There are no affiliations available

Personalised recommendations