The Role of the Bone Marrow in Allergic Disease

  • Mark D. Inman
  • Roma Sehmi
  • Paul M. O’Byrne
  • Judah A. Denburg
Chapter

Abstract

A current understanding of the pathogenesis of allergen-induced airway diseases is presented in several chapters in this book. These events are schematically summarized in Fig. 1. The development of airway inflammation occurs in response to the multiple actions of mediators released primarily from mast cells and T-helper 2 (Th2) cells, including autocrine upregulation and recruitment of inflammatory cells via target cell priming, adhesion molecule activation, chemotaxis, target cell activation, and decreased apoptosis. All of these well-recognized mechanisms are concerned with the movement of cells or activation of cells in the airway. Little attention has been paid to the source of these inflammatory cells as a mechanism in allergic inflammation.

Keywords

Mast Cell Allergic Disease Allergy Clin Immunol Allergen Challenge Airway Hyperresponsiveness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Metcalf D (1993) Hematopoietic regulators: redundancy or subtlety. Blood 81: 3515–3523.Google Scholar
  2. 2.
    Lord BI, Dexter TM (1992) Growth Factors in Haemopoiesis. Bailliere Tindall, London.Google Scholar
  3. 3.
    Ogawa M (1993) Differential and proliferation of hematopoietic stem cells. Blood, 81: 2844–2853.PubMedGoogle Scholar
  4. 4.
    Till JE, McCullogh EA, Siminovitch L (1964) A stochastic model of stem cell proliferation, based on growth of spleen colony-forming cells. Proc Natl Acad Sci USA 51: 29.PubMedCrossRefGoogle Scholar
  5. 5.
    Humphries RK, Eaves AC, Eaves CJ (1981) Self-renewal of hemopoietic stem cells during mixed colony formation in vitro. Proc Natl Acad Sci USA 78: 3629–3633.PubMedCrossRefGoogle Scholar
  6. 6.
    Nakahata T, Gross AJ, Ogawa M (1982) A stochastic model of self-renewal and commitment to differentiation of the primitive hemopoietic stem cells in culture. J Cell Physiol 113: 455–458.PubMedCrossRefGoogle Scholar
  7. 7.
    Suda T, Suda J, Ogawa M (1983) Single-cell origin of mouse hemopoietic colonies expressing multiple lineages in variable combinations. Proc Natl Acad Sci USA 80: 6689–6693.PubMedCrossRefGoogle Scholar
  8. 8.
    Suda T, Suda J, Ogawa M (1984) Disparate differentiation in mouse hemopoietic colonies derived from paired colonies. Proc Natl Acad Sci USA 81: 2520–2524.PubMedCrossRefGoogle Scholar
  9. 9.
    Leary AG, Ogawa M, Strauss LC, Civin CI (1984) Single cell origin of multilineage colonies in culture: Evidence that differentiation of multipotent progenitors and restriction of proliferative potential of monopotent progenitors are stochastic processes. J Clin Invest 74: 2193–2197.Google Scholar
  10. 10.
    Leary AG, Strauss LC, Civin CI, Ogawa M (1985) Disparate differentiation in hemopoietic colonies derived from human paired progenitors. Blood 66: 327–332.PubMedGoogle Scholar
  11. 11.
    Fairburn LJ, Cowling GJ, Reipert BM, Dexter TM (1993) Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors. Cell 74: 823–832.CrossRefGoogle Scholar
  12. 12.
    Koury MJ (1992) Programmed cell death (apoptosis) in hemopoiesis. Exp Hematol 20: 391–394.PubMedGoogle Scholar
  13. 13.
    Just U, Stocking C, Spooner E, Dexter TM, Osterag W (1991) Expression of the GM-CSF gene after retroviral transfer in hematopoietic stem cell lines induces synchronous granulocyte-macrophage differentiation. Cell 64: 1163–1173.PubMedCrossRefGoogle Scholar
  14. 14.
    Spivak JL (1986) The mechanism of action of erythropoietin. Int J Cell Cloning 4.139–166.Google Scholar
  15. 15.
    Sherr CJ (1990) Colony stimulating factor-1 receptor. Blood 75: 1–12.PubMedGoogle Scholar
  16. 16.
    Yarden Y, Kuang W, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, Chen E, Schlessinger J, Francke U, Ullrich A (1987) Human proto-oncogene c-kit: a new surface receptor tyrosine kinase for an unidentified ligand. EMBO J 6: 3341–3351.PubMedGoogle Scholar
  17. 17.
    Cosman D, Ceretti DP, Larsen A, Park L, March C, Domer S, Gillis S, Urdahl D (1986) Cloning and expression of human interleukin 2 receptor. Nature 312: 768–771.CrossRefGoogle Scholar
  18. 18.
    Miyajima A, Mui AL, Ogorochi T, Sakamaki K (1993) Receptors for granulocyte-macrophage colony stimulating factor, interleukin-3 and interleukin-5. Blood 82: 1960–1974.PubMedGoogle Scholar
  19. 19.
    Kitamura T, Sato N, Arai K, Miyajima A (1991) Expression cloning of the human IL-3 receptor cDNA reveals a shared beta subunit for the human IL-3 and GM-CSF receptors. Cell 66: 1165–1174.PubMedCrossRefGoogle Scholar
  20. 20.
    Harada N, Castle BE, Gorman DM, Itoh N, Shreurs J, Barret RL, Howard M, Miyajima A (1990) Expression cloning of a cDNA encoding the murine interleukin-4 receptor based on ligand binding. Proc Natl Acad Sci USA 87: 857–861.PubMedCrossRefGoogle Scholar
  21. 21.
    Takaki S, Tominaga A, Hitoshi Y, Mita S, Sonoda E, Yamaguchi N, Takutsu K (1990) Molecular cloning and expression of the murine interleukin-5 receptor. EMBO J 9: 4367–4374.PubMedGoogle Scholar
  22. 22.
    Yamasaki K, Taga T, Hirata Y, Yawata H, Kawanishi Y, Seed B, Taniguchi T, Hirano T, Kishimoto T (1988) Cloning and expression of the human interleukin-6 (BSF-2/IFN beta 2) receptor. Science 241: 825–828.PubMedCrossRefGoogle Scholar
  23. 23.
    Goodwin RG, Friend D, Ziegler SF, Jerzy, R Falk, BA, Gimpel S, Cosman D, Dower SK, March CJ, Namen AE, Park LS (1990) Cloning of the human and murine interleukin-7 receptors: demonstration of a soluble form and homology to a new receptor super-family. Cell 60: 941–951.Google Scholar
  24. 24.
    Yang YC, Yin T (1992) Interleukin-11 and its receptor. Biofactors 4: 15–21.PubMedGoogle Scholar
  25. 25.
    Fukanuga R, Ishizaka-Ikeda E, Seto Y, Ngata S (1990) Expression cloning of a receptor for murine granulocyte colony-stimulating factor. Cell 61: 341–350.CrossRefGoogle Scholar
  26. 26.
    Gearing DP, Thut CJ, VandenBos T, Gimpel SD, Delaney PB, King JA, Price V, Cosman D, Beckmann MP (1991) Leukemia inhibitory factor receptor is structurally related to IL-6 signal transducer, gp 130. EMBO J 10: 2839–2848.PubMedGoogle Scholar
  27. 27.
    Vadas MA, Lopez AF, Gamble JR, Elliot MJ (1991) Role of colony stimulating factors in leukocyte responses to inflammation and infection. Curr Opin Immunol 3: 97–104.PubMedCrossRefGoogle Scholar
  28. 28.
    Smith LJ, Rubin AE, Patterson R (1988) Mechanisms of platelet activating factor-induced bronchoconstriction in humans. Am Rev Resp Disease 137: 1015–1019.Google Scholar
  29. 29.
    Denburg JA, Telizyn S, Messner H, Jamal BLN, Ackerman SJ, Gleich GJ, Bienenstock J (1985) Heterogeneity of human peripheral blood eosinophil type colonies: evidence for a common basophileosinophil progenitor. Blood 66: 312–318.PubMedGoogle Scholar
  30. 30.
    Sanderson CJ, Warren DJ, Strath M (1985) Identification of a lymphokine that stimulates oesinophil differentiation in vitro. Its relationship to interleukin-3, and functional properties of eosinophils produced in culture. J Exp Med 162: 60–74.PubMedCrossRefGoogle Scholar
  31. 31.
    Clutterbuck EJ, Sanderson CJ (1988) Human eosinophil hematopoiesis studied in vitro by means of murine eosinophil differentiation factor (IL-5): production of fucntionally active eosinophils from normal human bone marrow. Blood 71: 646–651.PubMedGoogle Scholar
  32. 32.
    Denburg JA (1992) Basophil and mast cell lineages in vitro and in vivo. Blood 79: 846–860.PubMedGoogle Scholar
  33. 33.
    Valent P, Ashman LK, Hinterberger W, Eckersberger F, Majdic O, Lechner K, Bettelheim P (1989) Mast cell typing: demonstration of a distinct hematopoietic cell type and evidence for immunophenotypic relationship to mononuclear phagocytes. Blood 73: 1778–1785.PubMedGoogle Scholar
  34. 34.
    Durham SR, Sun Ying, Varney VA, Jacobson MR, Sudderick RM, Mackay IS, Kay AB, Hamid QA (1992) Cytokine messenger RNA expression for IL-3, IL-4, IL-5 and GM-CSF in the nasal mucosa after local allergen provocation: relationship to tissue eosinophilia J Immunol 148: 2390–2394.Google Scholar
  35. 35.
    Woolley KL, Adelroth E, Woolley MJ, Ellis R, Jordana M, O’Byrne PM (1995) Effects of allergen challenge on eosinophils, eosinophil cationic protein and granulocyte-macrophage colony stimulating factor in mild asthma. Am J Resp Crit Care Med 151: 1915–1924.PubMedGoogle Scholar
  36. 36.
    Sousa AR, Poston RN, Lane SJ, Nakhosteen JA, Lee TH (1993) Detection of GM-CSF in asthmatic bronchial epithelium and decrease by inhaled corticosteroids. Am Rev Resp Disease 147: 1557–1561.Google Scholar
  37. 37.
    Resnick MB, Weller PF (1993) Mechanisms of eosinophil recruitment. Am J Resp Cell Mol Biol 8: 349–355.Google Scholar
  38. 38.
    Hansen PB, Knudsen H, Gaarsdal E, Jensen L, Ralfkiaer E, Johnsen HE (1995) Short-term in vivo priming of bone marrow haematopoiesis with rhG-CSF, rhGM-CSF or rhIL-3 before marrow harvest expands myelopoiesis but does not improve engraftment capability. Bone Marrow Transpl 16: 373–379.Google Scholar
  39. 39.
    Metcalf D (1980) Clonal analysis of proliferation and differentiation of paired daughter cells: action of granulocyte-macrophage colony stimulating factor on granulocyte-macrophage precursors. Proc Natl Acad Sci USA 77: 5327–5330.PubMedCrossRefGoogle Scholar
  40. 40.
    Metcalf D (1991) Lineage commitment of hemopoietic progenitor cells in developing blast cell colonies: Influences of colony stimulating factors. Proc Natl Acad Sci USA 88:11, 310–11, 314.Google Scholar
  41. 41.
    McDermott C, Fenwick B (1992) Neutrophil activity associated with increased neutrophil acyloxyacyl hydrolase activity during inflammation in cattle. Am J Vet Res, 53: 803–807.PubMedGoogle Scholar
  42. 42.
    Azzawi MB, Bradley B, Jeffery PK, Frew AJ, Wardlaw AJ, Knowles G, Assoufi B, Collins JV, Durham S, Kay AB (1990) Identification of activated T lymphocytes and eosinophils in bronchial biopsies in stable atopic asthmatics. Am Rev Resp Disease 142: 1407–1413.Google Scholar
  43. 43.
    Kitamura Y, Yokoyama M, Matsuda H, Ohno T, Mori KJ (1981) Spleen colony-forming cell as common precursor for tissue mast cells and granulocytes. Nature 291: 159–160.PubMedCrossRefGoogle Scholar
  44. 44.
    Kitamura Y, Go S, Hatanaka K (1978) Decrease of mast cells in W/WV mice and their increase by bone marrow transplantation. Blood 52: 447–452.PubMedGoogle Scholar
  45. 45.
    Ginsburg H, Lagunoff D (1967) The in vitro differentiation of mast cells. Cultures of cells from immunized mouse lymph nodes and thoracic duct lymph on fibrous monolayers. J Cell Biol 35: 685–697.Google Scholar
  46. 46.
    Agis H, Willheim M, Sperr WR, Wilfing A, Boltz-Nitulescu G, Geissler K (1993) Identification of the circulating mast cell progenitor as a c-kit’, CD43+, CD14+, CD17-, LY-, colony forming cell. Blood 82 (Suppl): 102a (abstract).Google Scholar
  47. 47.
    Jarboe DL, Huff TF (1989) The mast cell-committed progenitor II. W/W“ do not make mast cell committed progenitors and SI/SId fibroblasts do not support development of normal mast cell committed progenitors. J Immunol 142: 2418–2423.Google Scholar
  48. 48.
    Kirshenbaum AS, Goff JP, Dreskin SC, Irani A, Schwartz LB, Metcalf DD (1989) IL-3 dependent growth of basophil-like and mast-cell-like cells from human bone marrow. J Immunol 142: 2424–2429.PubMedGoogle Scholar
  49. 49.
    Tei H, Kasugai T, Tsujimura T, Adachi S, Furitsu T, Tohya K, Kimura M, Zsebo KM, Newlands GF, Miller HR, Kanakura Y, Kitamura Y (1994) Characterization of cultured mast cells derived from WS/WS mast cell deficient rats with a small deletion at tyrosine kinase domain of c-kit. Blood 83: 916–925.PubMedGoogle Scholar
  50. 50.
    Pluznik DH, Saks SL (1965) The cloning of normal “mast” cells in tissue culture. J Cell Comp Physiol 66: 319–324.CrossRefGoogle Scholar
  51. 51.
    Bradley TR, Metcalf D (1966) The growth of mouse bone-marrow cells in vitro. Austral J Exp Biol Biolog Sci 44: 287–289.CrossRefGoogle Scholar
  52. 52.
    Civin CI, Strauss LC, Brovall C, Schwartz JF Shaper JH (1984) Antigenic analysis of hemopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-la cells. J Immunol 133: 157–165.PubMedGoogle Scholar
  53. 53.
    Katz F, Tindle RW, Sutherland DR, Greaves MD (1985) Identification of a membrane glycoprotein associated with hemopoietic progenitor cells. Leukemia Res 9: 191–198.CrossRefGoogle Scholar
  54. 54.
    Sutherland DR, Eating A (1992) The CD34 antigen: Structure, biology and potential clinical applications. J Hemotherapy 1: 115–129.Google Scholar
  55. 55.
    Civin CI, Trischman MJ, Fackler I, Bernstein I, Buhring H, Campos L, Greaves MF, Kamoun M, Katz D, Lansdorp P, Look T, Seed B, Sutherland DR, Tindle R, Uchanska-Zeigler B (1989) Summary of CD34 cluster workshop section. In: W. Knapp, (ed.), Leukocyte typing. Oxford University Press, Oxford, pp. 818–825.Google Scholar
  56. 56.
    Baum CM, Weissman IL, Tsukamoto A, Buckle A, Penult B (1992) Isolation of a candidate human hematopoietic stem cell population. Proc Natl Acad Sci USA 89: 2804–2808.PubMedCrossRefGoogle Scholar
  57. 57.
    Murray LJ, Bruno E, Yeo EL, Tsukamoto A, Hoffman R, Sutherland DR (1994) CDw109 antibody 8A3 identifies a minor subset of CD34+ foetal bone marrow cells that includes multilineage and megakaryocyte progenitor cells as well as hemopoietic stem cells. Blood 84 (Suppl): 327 (abstract)Google Scholar
  58. 58.
    Stobl H, Takimoto M, Majdic P, Hocker P, Knaff W (1992) Antigenic analysis of human hemopoietic progenitor cells expressing the growth factor c-kit. Br J Haematol 82: 287–294.CrossRefGoogle Scholar
  59. 59.
    Hao Q, Shah M, Thiemann FT, Smogorzewska EM, Crooks, GM (1995) A functional comparison of CD34+, CD38- cells in cord blood and bone marrow. Blood 86: 3745–3753.PubMedGoogle Scholar
  60. 60.
    Sealand S, Duvert V, Caux C, Pandrau D, Favre C, Valle A, Durand I, Charbord P, deVries J, Banchereau (1992) Distribution of surface-membrane molecules on bone marrow and cord blood CD34+ hemopoietic cells. Exp Hematol 20: 24–33.Google Scholar
  61. 61.
    Pierelli L, Teopili L, Menichella G, Rumi C, Paolinin A, Lovino S, Puggioni PL, Bruno B (1993) Further investigations on the expression of HLA-DR, CD33 and CD13 surface antigens on purified bone marrow and peripheral blood CD34* hemopoietic progenitor cells. Br J Haematol 84: 24–30.PubMedCrossRefGoogle Scholar
  62. 62.
    Ryan D, Kossover S, Mitchell S, Frantz C, Hennessy L, Cohen H (1986) Subpopulations of common acute leukemia antigen-positive lymphoid cells in normal bone marrow identified by hemopoietic differentiation antigens. Blood 68: 417–425.PubMedGoogle Scholar
  63. 63.
    Mossalayi MD, Dalloul AH, Betho JM, Lecron JC, Goube de Laforest P, Depre P (1990) In vitro differentiation and proliferation of purified human thymic and bone marrow CDT CD2- T-cell precursors. Exp Hematol 18: 326–331.PubMedGoogle Scholar
  64. 64.
    Kurata H, Arai K, Yokata T, Arai, K (1995) Differential expression of granulocyte macrophage-colony stimulating factor and IL-3 receptor subunits on human CD34+ cells and leukemic cell lines. J Allergy Clin Immunol 96: 1083–1099.PubMedCrossRefGoogle Scholar
  65. 65.
    Sato N, Caux C, Kitamura T, Watanabe Y, Arai K, Banchereau J, Myajima A (1993) Expression and factor-dependent modulation of the interleukin-3 receptor subunits on human hematopoietic cells. Blood 82: 752–761.PubMedGoogle Scholar
  66. 66.
    Paul CC, Mahrer S, Marshall T, Elbert T, Wong I, Ackerman SJ, Baumgarten C (1995) Changing the differentiation program of hematopoietic cells: Retinoic acid-induced shift of eosinohil-committed cells to neutrophils. Blood 86: 3737–3744.Google Scholar
  67. 67.
    Sehmi R, Howie K, Sutherland DR, Schragge W, O’Byrne PM, Denburg JA (1996) Increased levels of CD34+ hemopoietic progenitor cells in atopic subjects. Am J Resp Cell Mol Biol 15: 645–654.Google Scholar
  68. 68.
    Denburg JA, Telizyn S, Belda A, Dolovich J, Bienenstock J (1985) Increased numbers of circulating basophil progenitors in atopic patients. J Allergy Clin Immunol 76: 466–472.PubMedCrossRefGoogle Scholar
  69. 69.
    Otsuka H, Dolovich J, Befus D, Telizyn S, Bienenstock J, Denburg, JA (1986) Basophilic cell progenitors, nasal metachromatic cells, and peripheral blood basophils in ragweed-allergic patients. J Allergy Clin Immunol 78: 365–371.PubMedCrossRefGoogle Scholar
  70. 70.
    Denburg JA, Dolovich J, Hamish D (1989) Basophil mast cell and eosinophil growth and differentiation factors in human allergic disease. Clin Exp Allergy 19: 249–254.PubMedCrossRefGoogle Scholar
  71. 71.
    Otsuka H, Dolovich J, Befus D, Bienenstock J, Denburg JA (1986) Peripheral blood basophils, basophil progenitors, and nasal metachromatic cells in allergic rhinitis. Am Rev Resp Disease 133: 757–762.Google Scholar
  72. 72.
    Linden M, Svensson C, Andersson M, Greiff L, Andersson E, Denburg JA, Seidegard J, Persson CGA (1994) Increased numbers of circulating leukocyte progenitors in patients with allergic rhinitis during natural allergen exposure. Am J Resp Crit Care Med 149: A602 (abstract)Google Scholar
  73. 73.
    Gibson PG, Dolovich J, Girgis-Girbado A, Morris M, Anderson M, Hargreave FE, Denburg JA (1990) The inflammatory response in asthma exacerbation: changes in circulating eosinophils, basophils and their progenitors. Clin Exp Allergy 20: 661–668.Google Scholar
  74. 74.
    Taylor IK, O’Shaughnessy KM, Fuller RW, Dollery CT (1991) Effect of a cysteinyl leukotriene receptor antagonist, ICI-219, on allergen-induced bronchoconstriction and airway hyperreactivity in atopic subjects. Lancet 337: 690–694.PubMedCrossRefGoogle Scholar
  75. 75.
    Gelb AF, Tashkin DP, Epstein JD, Gong H, Zamel N (1985) Exercise-induced bronchoconstriction in asthma. Chest 87: 196–201.PubMedCrossRefGoogle Scholar
  76. 76.
    Denburg JA, Davison M, Bienenstock J (1980) Basophil production: Stimulation by factors derived from guinea pig splenic T-lymphocytes. J Clin Invest 65: 390–399.Google Scholar
  77. 77.
    Denburg JA, Askenase P, Brown SJ, Bienenstock J (1986) Serum basophil-stimulating activity in the guinea-pig during induction of basophilic responses to ovalbumin and tick feeding. Immunology 58: 405–410.PubMedGoogle Scholar
  78. 78.
    Sehmi R, Wood LJ, Watson RM, Inman MD, O’Byrne PM, Denburg JA (1996) Increases in circulating CD34+ hemopoietic progenitors in allergen induced late asthmatic responses. J Allergy Clin Immunol 97: 277 (abstract)CrossRefGoogle Scholar
  79. 79.
    Woolley MJ, Denburg JA, Ellis R, Dahlback M, O’Byrne PM (1994) Allergen-induced changes in bone marrow progenitors and airway responsiveness in dogs and the effect of inhaled budesonide on these parameters. Am J Resp Cell Mol Biol 11: 600–606.Google Scholar
  80. 80.
    Inman MD, Denburg JA, Ellis R, Dahlback M, O’Byrne PM (1996) Allergen-induced increase in bone marrow progenitors in airway hyperresponsive dogs: Regulation by a serum hemopoietic factor. Am J Resp Cell Mol Biol 15: 305–311.Google Scholar
  81. 81.
    Kasugai T, Tei H, Okada M, Hirota S, Morimoto M, Yamada M, Nakama A, Arizono N, Kitamura Y (1995) Infection with Nippostrongulus brasiliensis induces invasion of mast cell precursors from peripheral blood to small intestine. Blood 85: 1334–1340.PubMedGoogle Scholar
  82. 82.
    Sorden SD, Castleman WL (1995) Virus-induced increases in mast cells in brown Norway rats are associated with both local mast cell proliferation and increases in blood mast cell precursors. Lab Invest 73: 197–204.PubMedGoogle Scholar
  83. 83.
    Ohwawara Y, Lei X, Stampfli X, Xing Z, Jordana M (1996) Cytokine and eosinophil responses in peripheral blood and bone marrow in a murine model of allergen-induced airways eosinophilic inflammation. Am J Resp Crit Care Med 153: A140 (abstract).Google Scholar
  84. 84.
    Wood LJ, Inman MD, Watson RM, Denburg JA, O’Byme PM (1996) Changes in bone marrow progenitor cells following allergen challenge in mild asthmatic subjects. Am J Resp Crit Care Med 153: A250 (abstract)Google Scholar
  85. 85.
    Sehmi R, Wood LJ, Inman MD, Watson RM, O’Byrne PM, Lopez AF, Denburg JA (1996) Increases in bone marrow derived CD34+ hemopoietic progenitor cells expressing the alpha-subunit of IL-3 receptors following allergen challenge in mild asthmatics. Am J Resp Crit Care Med 153: A880 (abstract)Google Scholar
  86. 86.
    Denburg JA, Dolovich J, Ohtoshi T, Cox G, Gauldie J, Jordana M (1990) The microenvironmental differentiation hypothesis of airway inflammation. Am J Rhinol 4: 29–32.CrossRefGoogle Scholar
  87. 87.
    Jordana M, Vancheri C, Ohtoshi T, Harnish D, Gauldie J, Dolovich J, Denburg JA (1989) Hemopoietic function of the microenvironment in chronic airway inflammation. Agents Actions (suppl) 28: 85–95.Google Scholar
  88. 88.
    Kim YK, Nakagawa N, Nakano K, Sulakvelidze I, Dolovich J, Denburg JA (1996) Immunolocalization of stem cell factor in inflamed nasal tissue. J Allergy Clin Immunol 97: 282 (abstract).CrossRefGoogle Scholar
  89. 89.
    Ohnishi M, Ruhno J, Bienenstock J, Dolovich J, Denburg JA (1989) Hematopoietic growth factor production by cultured cells of human nasal polyp epithelial scrapings: kinetics, cell source and relationship to clinical status. J Allergy Clin Immunol 83: 1091–1100.PubMedCrossRefGoogle Scholar
  90. 90.
    Nonaka M, Nonaka R, Woolley KL, Adelroth E, Miura K, Okhawara Y, Glibetic M, Nakono K, O’Byrne PM, Dolovich J, Jordana M (1995) Distinct immunohistochemical localization of IL-4 in human inflamed airway tissues. IL-4 is localized to eosinophils in vivo and released by peripheral blood eosinophils. J Immunol 155: 3234–3244.PubMedGoogle Scholar
  91. 91.
    Broide DH, Paine MM, Firestein GS (1992) Eosinophils express interleukin 5 and granulocyte-macrophage colony stimulating factor mRNA at sites of allergic inflammation in asthmatics. J Allergy Clin Immunol 90: 1414–1424.Google Scholar
  92. 92.
    Corrigan CJ, Hamid Q, North J, Barkans J, Moqbel R, Durham S, Kay AB (1995) Peripheral blood CD4, but not CD8 T lymphocytes in patients with exacerbation of asthma transcribe messenger RNA encoding cytokines which prolong eosinophil survival in the context of a Th2-type pattern: effect of glucocorticoid therapy. Am J Resp Cell Mol Biol 12: 567–578.Google Scholar
  93. 93.
    Metcalf D, Nicola NA, Gearing DP (1990) Effects of injected leukemia inhibitory factor on hematopoietic and other tissues in mice. Blood 76: 50–56.PubMedGoogle Scholar
  94. 94.
    Ishibashi T, Kimura H, Shikama Y, Uchida T, Kariyone S, Hirano T, Kishimoto T, Akiyama Y (1989) Interleukin-6 is a potent thrombopoietic factor in vivo in mice. Blood 74: 1241–1244.PubMedGoogle Scholar
  95. 95.
    Neben TY, Loebelenz J, Hayes L, McCarthy K, Stoudemire J, Schaub R, Goldman SJ (1993) Recombinant human interleukin-11 stimulates megakaryocytopoiesis and increases in peripheral platelets in normal and splenectomized mice. Blood 81: 901–908.PubMedGoogle Scholar
  96. 96.
    Mayer P, Valent P, Schmidt G, Liehl E, Bettelheim P (1989) The in vivo effects of recombinant human interleukin-3: Demonstration of basophil differentiation factor, histamine producing activity, and priming of GM-CSF responsive progenitors in nonhuman primates. Blood 74: 613–621.Google Scholar
  97. 97.
    Donahue RE, Seehra J, Metzger M, Lefebvre D, Rock B, Carbone S, Nathan DG, Garnick M, Sehgal PK, Laston D, LaVallie E, McCoy J, Schendel PF, Norton C, Turner K, Yang Y, Clark SC (1988) Human IL-3 and GM-CSF act synergistically in stimulating hematopoiesis in primates. Science 241: 1820–1823.PubMedCrossRefGoogle Scholar
  98. 98.
    Collins PD, Marleau S, Griffiths-Johnson DA, Jose PJ, Williams TJ (1995) Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J Exp Med 182: 1169–1174.PubMedCrossRefGoogle Scholar
  99. 99.
    Xing Z, Ohkawara Y, Jordana M, Graham FL, Gauldie J (1996) Transfer of granulocyte-macrophage colony-stimulating factor gene to rat lung induces eosinophilia, monocytosis and fibrotic reactions. J Clin Invest 97: 1102–1110.PubMedCrossRefGoogle Scholar
  100. 100.
    Inman MD, Ellis R, Wattie J, Lane CG, Dahlback M, Denburg JA, O’Byrne PM (1996) Increased bone marrow growth after allergen challenge in dogs depends on a serum factor. J Allergy Clin Immunol 97: 297 (abstract).CrossRefGoogle Scholar
  101. 101.
    Agosti JM, Sprenger JD, Lum LG, Witherspoon RP, Fisher LD, Storb R, Henderson WR (1988) Transfer of allergen-specific IgE mediated hypersensitivity with allogenic bone marrow transplantation. N Engl J Med 319: 1623–1628.PubMedCrossRefGoogle Scholar
  102. 102.
    De Sanctis GT, Itoh A, Qin S, Green FYH, Grobholz JK, Maki T, Martin TR, Drazen JM (1996) Bone marrow transplantation partially confers genetically determined hyperreactivity in inbred mice. Am J Resp Crit Care Med 153: A769 (abstract).Google Scholar
  103. 103.
    Metzger WJ, Zavala D, Richerson HB, Moseley P, Iwamota P, Monick M, Sjoerdsma K, Hunnunghake GK (1987) Local allergen challenge and bronchoalveolar lavage of allergic asthmatic lungs. Am Rev Resp Disease 135: 433–440.Google Scholar
  104. 104.
    Barnes PJ, Adcock I (1993) Anti-inflammatory actions of steroids: molecular mechanisms. TiPS Revs 14: 436–441.Google Scholar
  105. 105.
    Taylor IK, Shaw RJ (1993) The mechanism of action of corticosteroids in asthma. Resp Med 87: 261–277.CrossRefGoogle Scholar
  106. 106.
    Mauser PJ, Pitman AM, Fernandez X, Foran SK, Adams III GK, Kreutner W, Egan RW, Chapman RW (1995) Effects of an antibody to interleukin-5 in a monkey model of asthma. Am J Resp Crit Care Med 152: 467–472.PubMedGoogle Scholar
  107. 107.
    Gulbenkian AR, Egan RW, Fernandez X, Jones H, Kreutner W, Kung T, Payvandi F, Sullivan L, Zurcher JA, Watnick AS (1992) Interleukin-5 modulates eosinophil accumulation in allergic guinea pig lung. Am Rev Resp Disease 146: 263–265.Google Scholar
  108. 108.
    Kung TT, Stelts DM, Zurcher JA, Adams III GK, Egan RW, Kreutner W, Watnick AS, Jones H, Chapman RW (1995) Involvement of IL-5 in a murine model of allergic pulmonary inflammation: prophylactic and therapeutic effect of an IL-5 antibody. Am J Resp Cell Mol Biol 13: 360–365.Google Scholar
  109. 109.
    Mauser Pi, Pitman A, Fernandez X, Zurcher JA, Kung T, Watnick AS, Egan RW, Kreutner W, Adams III GK (1993) Inhibitory effect of the TRFK-5 anti-IL-5 antibody in a guinea pig model of asthma. Am Rev Resp Disease 148: 1623–1627.CrossRefGoogle Scholar
  110. 110.
    Egan RW, Athwahl D, Chou C, Emtage S, Jehn C, Kung TT, Mauser Pi, Murgolo NJ, Bodmer MW (1995) Inhibition of pulmonary eosinophilia and hyperreactivity by antibodies to interleukin-5. Int Arch Allergy Immunol 107: 321–322.PubMedCrossRefGoogle Scholar
  111. 111.
    Gibson PG, Manning PJ, O’Byrne PM, Girgis-Girbado A, Dolovich J, Denburg JA, Hargreave FE (1991) Allergen-induced asthmatic responses. Relationship between increases in airway responsiveness and increases in circulating eosinophils, basophils and their progenitors. Am Rev Resp Disease 143: 331–335.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Mark D. Inman
  • Roma Sehmi
  • Paul M. O’Byrne
  • Judah A. Denburg

There are no affiliations available

Personalised recommendations