Proinflammatory Cytokines in Allergic Disease

  • Daniel L. Hamilos
Chapter

Abstract

Amid the complex regulatory network of cytokines that produce the phenotype of allergic inflammation, there are processes that depend heavily on the participation of cytokines that are not specific to the allergic process. An example of this is the role of proinflammatory cytokines in allergic inflammation. These cytokines can be produced by allergen-specific or immunoglobulin E (IgE)-dependent mechanisms, and they play a key role in allergic inflammation. Similarly, many of the small-molecular-weight chemokines participate in allergic inflammation. The chemokines are of great interest because of their potent and selective chemoattractant properties, which make them likely candidates for regulating cellular influx into sites of allergic inflammation.

Keywords

Mast Cell Allergic Rhinitis Allergic Disease Allergy Clin Immunol Nasal Polyp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Xing Z, Braciak T, Ohkawara Y, Sallenave J, Foley R, Sime P, Jordana M, Graham F, Gauldie J (1996) Gene transfer for cytokine functional studies in the lung: the multifunctional role of GM-CSF in pulmonary inflammation. J Leukocyte Biol 59: 481–488.PubMedGoogle Scholar
  2. 2.
    Moqbel R, Hamid Q, Ying S, Barkans J, Hartnell A, Tsicopoulos A, Wardlaw AJ, Kay AB (1991) Expression of mRNA and immunoreactivity for the granulocyte/macrophage colony-stimulating factor in activated human eosinophils. J Exp Med 174: 749–752.PubMedCrossRefGoogle Scholar
  3. 3.
    Olmo I, Lea R, Rinotto S, Marshall J, Denburg J, Dolovich J, Gauldie J, Jordana M (1991) Granulocyte/macrophage colony-stimulating factor ( GM-CSF) gene expression by eosinophils in nasal polyposis. Am J Respir Cell Mol Biol 5: 505–510.Google Scholar
  4. 4.
    Gaga M, Frew AJ, Varney VA, Kay AB (1991) Eosinophil accumulation and T-lymphocyte infiltration in allergen-induced late phase skin reactions and classical delayed-type hypersensitivity. J Immunol 147: 816–22.Google Scholar
  5. 5.
    Kay AB, Ying VS, Varney M, Gaga SR, Durham R, Moqbel R, Wardlaw AJ, Hamid QA (1991) Messenger RNA expression of cytokine gene cluster, IL-3, IL-4, IL-5 and GM-CSF in allergen-induced late phase cutaneous reactions in atopic subjects. J Exp Med 173: 775–778.PubMedCrossRefGoogle Scholar
  6. 6.
    Durham SR, Ying S, Varney VA, Jacobson MR, Sudderick RM, Mackay IS, Kay AB, Hamid QA (1992) Cytokine messenger RNA expression for IL-3, IL-4, IL-5, and granulocyte/macrophage-colonystimulating factor in the nasal mucosa after local allergen provocation: relationship to tissue eosinophilia. J Immunol 148: 2390–2394.PubMedGoogle Scholar
  7. 7.
    Varney V, Jaconsen M, Sudderick R, Robinson D, Irani A, Schwartz L, Mackay I, Kay A, Durham S (1992) Immunohistology of the nasal mucosa following allergen-induced rhinitis. Am Rev Respir Dis 146: 170–176.PubMedGoogle Scholar
  8. 8.
    Ying S, Durham SR, Barkans J, et al. (1993) T cells are the principal source of interleukin-5 mRNA in allergen-induced rhinitis. Am J Respir Cell Mol Biol 9: 356–360.PubMedGoogle Scholar
  9. 9.
    Bentley AM, Meng Q, Robinson DS, et al. (1993) Increases in activated T lymphocytes, eosinophils and cytokine mRNA expression for interleukin-5 and granulocyte/macrophage colony-stimulating factor in bronchial biopsies after allergen inhalation challenge in atopic asthmatics. Am J Respir Cell Mol Biol 8: 35–42.PubMedGoogle Scholar
  10. 10.
    Hamid W, Azzawi M, Ying S, Moqbel R, Wardlaw AJ, Corrigan CJ, Bradley B, Durham SD, Collins JV, Jeffery PK, et al. (1991) Interleukin-5 in mRNA mucosal bronchial biopsies from asthmatic subjects. Int Arch Allergy Immunol 94: 169–170.CrossRefGoogle Scholar
  11. 11.
    Ying S, Durham SR, Jacobson MR, Rak S, Masuyama K, Lowhagen O, Kay AB, Hamid QA (1994) T lymphocytes and mast cells express messenger RNA for interleukin-4 in the nasal mucosa in allergen-induced rhinitis. Immunology 82: 200–206.PubMedGoogle Scholar
  12. 12.
    Hamid Q, Azzawi M, Ying S, et al. (1991) Expression of mRNA for interleukin-5 in mucosal bronchial biopsies from asthma. J Clin Invest 87: 1541–1546.PubMedCrossRefGoogle Scholar
  13. 13.
    Robinson DS, Hamid Q, Ying S, et al. (1992) Predominant TH2-line bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 326: 298–304.PubMedCrossRefGoogle Scholar
  14. 14.
    Hamid Q, Boguniewicz M, Leung DY (1994) Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J Clin Invest 94: 870–876.PubMedCrossRefGoogle Scholar
  15. 15.
    Hamilos DL, Leung DYM, Wood R, et al. (1993) Chronic hyperplastic sinusitis: association of tissue eosinophilia with mRNA expression of granulocyte-macrophage colony-stimulating factor and interleukin-3. J Allergy Clin Immunol 92: 39–48.PubMedCrossRefGoogle Scholar
  16. 16.
    Hamilos DL, Leung DYM, Wood R, Cunningham L, Bean DK, Yasruel Z, Schotman E, Hamid Q (1995) Evidence for distinct cytokine expression in allergic versus nonallergic chronic sinusitis. J Allergy Clin Immunol 96: 537–544.PubMedCrossRefGoogle Scholar
  17. 17.
    Nagata M, Sedgwick J, Busse W (1995) Differential effects of granulocyte-macrophage colony-stimulating factor on eosinophil and neutrophil superoxide anion generation. J Immunol 155 (10): 4948–4954.PubMedGoogle Scholar
  18. 18.
    Sedgwick J, Quan S, Calhoun W, Busse W (1995) Effect of interleukin-5 and granulocyte-macrophage colony stimulating factor on in vitro eosinophil function: comparison with airway eosinophils. J Allergy Clin Immunol 96 (3): 375–385.PubMedCrossRefGoogle Scholar
  19. 19.
    Resnick M, Weller P (1993) Mechanisms of eosinophil recruitment. Am J Respir Cell Biol 8: 349–355.Google Scholar
  20. 20.
    Owen W Jr, Rothenberg ME, Silberstein DS, Gasson JC, Stenens RL, Austen KF, Soberman Ri (1987) Regulation of human eosinophil viability, density and function by granulocyte macrophage colony-stimulating factor in the presence of 3T3 fibroblasts. J Exp Med 166: 129.PubMedCrossRefGoogle Scholar
  21. 21.
    Rothenberg MW, Owen WF, et al. (1987) Eosinophils co-cultured with endothelial cells have increased survival and functional properties. Science 137: 645–647.CrossRefGoogle Scholar
  22. 22.
    Rothenberg MW, Owen WF, et al. (1988) Human eosinophils have prolonged survival, enhanced functional properties and become hypodense when exposed to human interleukin-3. J Clin Invest 81: 1986–1992.PubMedCrossRefGoogle Scholar
  23. 23.
    Stankova J, Rola-Plexzczinski M, Dubois C (1995) Granulocyte-macrophage colony-stimulating factor increases 5-lipoxygenase gene transcription and protein expression in human neutrophils. Blood 85: 3719–3726.PubMedGoogle Scholar
  24. 24.
    Ottonello L, Morone M, Dapino P, Dallegri F (1995) Cyclic AMP-elevating agents down-regulate the oxidative burst induced by granulocyte-macrophage colony-stimulating factor ( GM-CSF) in adherent neutrophils. Clin Exp Immunol 101: 502–506.Google Scholar
  25. 25.
    McCain R, Dessypris E, Christman J (1993) Granulocyte/macrophage colony-stimulating factor stimulates human polymorphonuclear leukocytes to produce interleukin-8 in vitro. Am J Respir Cell Mol Biol 8: 28–34.PubMedGoogle Scholar
  26. 26.
    Ren Y, Savill J (1995) Proinflammatory cytokines potentiate thrombospondin-mediated phagocytosis of neutrophils undergoing apoptosis. J Immunol 154: 2366–2374.PubMedGoogle Scholar
  27. 27.
    Bratton D, Hamid Q, Boguniewicz M, Doherty D, Kailey J, Leung D (1995) Granulocyte macrophage colony-stimulating factor contributes to enhanced monocyte survival in chronic atopic dermatitis. J Clin Invest 95: 211–218.PubMedCrossRefGoogle Scholar
  28. 28.
    Broide DH, Firestein GS (1991) Endobronchial allergen challenge in asthma: demonstration of cellular source of granulocyte macrophage colony-stimulating factor by in situ hybridization. J Clin Invest 88: 1048–1053.PubMedCrossRefGoogle Scholar
  29. 29.
    Sousa AR, Poston RN, Lane SJ, Nakhosteen JA, Lee TH (1993) Detection of GM-CSF in asthmatic bronchial epithelium and decrease by inhaled corticosteroids. Am Rev Respir Dis 147: 1557–1561.PubMedGoogle Scholar
  30. 30.
    Walker C, Virchow JC, Bruijnzeel PLB, Blaser K (1991) T cell subsets and their soluble products regulate eosinophilia in allergic and non allergic asthma. J Immunol 146: 1829–1835.PubMedGoogle Scholar
  31. 31.
    Broide DH, Paine MM, Firestein GS (1992) Eosinophils express interleukin 5 and granulocyte macrophage-colony-stimulating factor mRNA at sites of allergic inflammation in asthmatics. J Clin Invest 80: 1414–1424.CrossRefGoogle Scholar
  32. 32.
    Jordana M, Vancheri C, Ohtoshi T, et al. (1989) Hemopoietic function of the micro environment in chronic airway inflammation. Agents Actions 28: 85–95.Google Scholar
  33. 33.
    Bradding P, Feather IH, Howarth PH, Mueller R, Roberts JA, Britten K, Bews WA, Hunt TC, Okayama Y, Heusser CH, Bullock GR, Church MK, Holgate ST (1992) Interleukin-4 is localized to and released by human mast cells. J Exp Med 176: 1381–1386.PubMedCrossRefGoogle Scholar
  34. 34.
    Bradding P, Roberts JA, Britten KM, Montefort S, Djukanovic R, Howarth PH, Holgate ST (1994) Interleukins (IL)-4, -5, -6 and TNF a in normal and asthmatic airways: evidence for the human mast cell as an important source of these cytokines. Am Rev Respir Cell Mol Biol 10: 471–480.Google Scholar
  35. 35.
    Okayama Y, Petit-Frere C, Kassel O, Semper A, Quint D, Tunon-de-Lara MJ, Bradding P, Holgate ST, Church MK (1995) Ig-E-dependent expression of mRNA for IL-4 and IL-5 in human lung mast cells. J Immunol 155: 1796–1808.PubMedGoogle Scholar
  36. 36.
    Gordon JR, Post T, Schulman ES, Galli SJ (1991) Characterization of mouse mast cell TNF-a induction in vitro and cells containing TNF-a. FASEB J 5: A1009.Google Scholar
  37. 37.
    Ohkawara Y, Yamauchi K, Tanno Y, et al. (1992) Human lung mast cells and pulmonary macrophages produce tumor necrosis factor-a in sensitized lung tissue after IgE receptor triggering. Am J Respir Cell Mol Biol 7: 385–392.PubMedGoogle Scholar
  38. 38.
    Schleimer RP, Sterbinsky SA, Kaiser J, Bickel C, Klunk D, Tomioka K, Newman W, Luscinskas FW, Gimbrone MJ, McIntyre BW, Bochner BS (1992) Interleukin-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium: association with expression of VCAM-1. J Immunol 148: 1086–1092.PubMedGoogle Scholar
  39. 39.
    Moser R, Fehr J, Bruijnzeel PLB (1992) IL-4 controls the selective endothelium-driven transmigration of eosinophils from allergic individuals. J Immunol 149: 1432–1438.PubMedGoogle Scholar
  40. 40.
    Iademarco MF, Barks JL, Dean DC (1995) Regulation of vascular cell adhesion molecule-1 expression by IL-4 and TNF-a in cultured endothelial cells. J Clin Invest 95: 264–271.PubMedCrossRefGoogle Scholar
  41. 41.
    Gosset P, Tsicopoulis A, Wallaert B, Joseph M, Capron A, Tonnel AB (1992) Tumor necrosis factor-a and interleukin-6 production by human mononuclear phagocytes from allergic asthmatics after IgEdependent stimulation. Am Rev Respir Dis 146: 768–774.PubMedGoogle Scholar
  42. 42.
    Gosset P, Lassalle P, Tonnell AB, et al. (1988) Production of an IL-1 inhibitory factor by human alveolar macrophages from normal subjects and allergic asthmatic subjects. Am Rev Resp Dis 138: 40–46.PubMedCrossRefGoogle Scholar
  43. 43.
    Cembryznska-Nowak M, Szklarz E, Inglot AD, Teodoczyk-Injeyan JA (1993) Elevated release of tumor mecrosis factor-a interferon-y by bronchoalveolar leukocytes from patients with bronchial asthma. Am Rev Respir Dis 147: 291.Google Scholar
  44. 44.
    Finotto S, Olmo I, Marshall JS, Gauldie J, Denburg JA, Dolovich J, Clark DA, Jordana M (1994) TNF-a production by eosinophils in upper airways inflammation (nasal polyposis). J Immunol 153: 2278–2289.PubMedGoogle Scholar
  45. 45.
    Lukacs NW, Strieter RM, Chenuse SW, Widmer M, Kunkel SL (1995) TNF-a mediates recruitment of neutrophils and eosinophils during airway inflammation. J Immunol 154: 5411–5417.PubMedGoogle Scholar
  46. 46.
    Lukacs NW, Streieter RM, Chensue SW, Kunkel SL (1994) Interleukin-4-dependent pulmonary eosinophil infiltration in a murine model of asthma. Am J Respir Cell Mol Biol 10: 526–532.PubMedGoogle Scholar
  47. 47.
    Wershil BK, Wang ZS, Gordon JR, Galli SJ (1991) Recruitment of neutrophils during IgE-depednent cutaneous late phase responses in the mouse is mast cell dependent: partial inhibition of the reaction with antiserum against tumor necrosis factor-a. J Clin Invest 87: 446–453.PubMedCrossRefGoogle Scholar
  48. 48.
    Moser R, Schleiffenbaum B, Groscurth P, Fehr J (1989) Interleukin 1 and tumor necrosis factor stimulate human vascular endothelial cells to promote transendothelial neutrophil passage. J Clin Invest 83: 444.PubMedCrossRefGoogle Scholar
  49. 49.
    Bochner BS, Luskinskas FW, Gimbrone MA, et al. (1991) Adhesion of human basophils, eosinophils, and neutrophils to interleukin-l-activated human vascular endothelial cells: Contribution of endothelial cell adhesion molecules. J Exp Med 173: 1553–1556.Google Scholar
  50. 50.
    Bochner BS, Undem BJ, Lichtenstein LM (1994) Immunological aspects of allergic asthma. Annu Rev Immunol 12: 295–335.PubMedCrossRefGoogle Scholar
  51. 51.
    Wellicome SM, Thornhill MH, Pitzalis C, et al. (1990) A monoclonal antibody that detects a novel antigen on endothelial cells that is induced by tumor necrosis factor, IL-1, or lipopolysaccharide J Immunol 144: 2558–2565.PubMedGoogle Scholar
  52. 52.
    Groves RW, Ross E, Barker JNWN, et al. (1992) Effect of in-vivo interleukin-1 on adhesion molecule expression in normal human skin. J Invest Dermatol 98: 384–387.PubMedCrossRefGoogle Scholar
  53. 53.
    Marini M, Soloperto M, Mezzetti M, Fasoli A, Mattoli S (1991) Interleukin-1 binds to specific receptors on human bronchial epithelial cells and upregulates granulocyte/macrophage colony-stimulating factor synthesis and release. Am J Respir Cell Mol Biol 4: 519–524.PubMedGoogle Scholar
  54. 54.
    Marini M, Vittori E, Hollemborg J, Mattoli S (1992) Expression of the potent inflammatory cytokines, granulocyte-macrophage-colony-stimulating factor and interleukin-6 and interleukin-8, in bronchial epithelial cells of patients with asthma. J Allergy Clin Immunol 89: 1001–1009.PubMedCrossRefGoogle Scholar
  55. 55.
    Tomita K, Tanigawa T, Yajima H, Fukutani K, Matsumoto Y, Tanaka Y, Sasaki T (1995) Identification and characterization of monocyte subpopulations from patients with bronchial asthma. J Allergy Clin Immunol 96: 230–238.PubMedCrossRefGoogle Scholar
  56. 56.
    Borish L, Mascali JJ, Rosenwasser LJ (1991) IgE-dependent cytokine production by human peripheral blood mononuclear phagocytes. J Immunol 146: 63–67.PubMedGoogle Scholar
  57. 57.
    Gosset P, Malaquin F, Delneste Y, Wallaert B, Carpon A, Joseph M, Tonnell A-B (1993) Interleukin-6 and interleukin-la production is associated with antigen-induced late nasal response. J Allergy Clin Immunol 92: 878–890.PubMedCrossRefGoogle Scholar
  58. 58.
    Linden M, Greiff L, Andersson M, Svensson C, Akerlund A, Bendes M, Andersson E, Persson CGA (1995) Nasal cytokines in common cold and allergic rhinitis. Clin Exp Allergy 25: 166–172.PubMedCrossRefGoogle Scholar
  59. 59.
    Gosset P, Tsicopoulos A, Wallaert B, Vannimenus C, Joseph M, Tonnel AB, Capron A (1991) Increased secretion of tumor necrosis factor alpha and interleukin-6 by alveolar macrophages consecutive to the development of the late asthmatic reaction. J Allergy Clin Immunol 88: 561–571.PubMedCrossRefGoogle Scholar
  60. 60.
    Broide DH, Lotz M, Cuomo AJ, Coburn DA, Federman EC, Wasserman SI (1992) Cytokines in symptomatic asthma airways. J Allergy Clin Immunol 89: 958–967.PubMedCrossRefGoogle Scholar
  61. 61.
    Okada S, Inoue H, Yamauchi K, Iijima H, Ohkawara Y, Takishima T, Shirato K (1995) Potential role of interleukin-1 in allergen-induced late asthmatic reactions in guinea pigs: suppressive effect of interleukin-1 receptor antagonist on late asthmatic reaction. J Allergy Clin Immunol 95: 1236–1245.PubMedCrossRefGoogle Scholar
  62. 62.
    Sim TC, Grant JA, Hilsmeier KA, Fuquda Y, Alam R (1994) Proinflammatory cytokines in nasal secretions of allergic subjects after antigen challenge. Am J Resp Crit Care Med 149: 339–344.PubMedGoogle Scholar
  63. 63.
    Vercelli D, Jabara HH, Arai K, Yokota T, Geha RS (1989) Endogenous interleukin 6 plays an obligatory role in interleukin 4-dependent human IgE synthesis. Eur J Immunol 19: 1419–1424.PubMedCrossRefGoogle Scholar
  64. 64.
    Shapira SK, Vercelli D, Jabara HH, Fu SM, Geha RS (1992) Molecular analysis of the induction of immunoglobulin E synthesis in human B cells by interleukin 4 and engagement of CD40 antigen. J Exp Med 175: 289–292.Google Scholar
  65. 65.
    Fahy JV, Kim KW, Liu J, Boushey HA (1995) Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J Allergy Clin Immunol 95: 843–852.PubMedCrossRefGoogle Scholar
  66. 66.
    Yokoyama A, Kohno N, Fujina S, Hamada H, Inque Y, Fujioka S, Ishida S, Hiwada K (1995) Circulating interleukin-6 levels in patients with bronchial asthma. Am J Respir Crit Care Med 151: 1354–1358.PubMedGoogle Scholar
  67. 67.
    Schall TJ, Bacon KB (1994) Chemokines, leukocyte trafficking and inflammation. Current Opin Immunol 6: 865–873.CrossRefGoogle Scholar
  68. 68.
    Alam R, Stafford S, Forsythe P, et al. (1993) RANTES is a chemotactic and activating factor for human eosinophils. J Immunol 150: 3442–3447.PubMedGoogle Scholar
  69. 69.
    Davies RJ, Wang JH, Trigg CJ, Devalia JL (1995) Expression of granulocyte/macrophage-colonystimulating factor, interleukin-8 and RANTES in the bronchial epithelium of mild asthmatics is down-regulated by inhaled beclomethasone dipropionate. Int Arch Allergy Immunol 107: 428–429.PubMedCrossRefGoogle Scholar
  70. 70.
    Stellato C, Beck LA, Gorgone GA, Proud D, Schall TJ, Ono SJ, Lichtenstein LM, Schleimer RP (1995) Expression of the chemokine RANTES by a human bronchial epithelial cell line. Modulation by cytokines and glucocorticoids. J Immunol 155: 410–418.Google Scholar
  71. 71.
    Ying S, Tabora-Barata L, Meng Q, Humbert M, Kay AB (1995) The kinetics of allergen-induced transcription of messenger RNA for monocyte chemotactic protein-3 and RANTES in the skin of human atopic subjects: relationship to eosinophil, T cell and macrophage recruitment. J Exp Med 181: 2153–2159.Google Scholar
  72. 72.
    Hamilos DL, Leung DYM, Wood R, Bean DK, Song YL, Schotman E, Hamid Q (1996) Eosinophil infiltration in nonallergic chronic hyperplastic sinusitis with nasal polyposis (CHS/NP) is associated with endothelial VCAM-1 upregulation and expression of TNF-a. Am J Respir Cell Mol Biol 15: 443–450.PubMedGoogle Scholar
  73. 73.
    Noso N, Proost P, Van Damme J, Schroder JM (1994) Human monocyte chemotactic proteins-2 and 3 (MCP-2 and MCP-3) attract human eosinophils and desensitize the chemotactic responses towards RANTES. Biochem Biophys Res Communs 200: 1470–1476.CrossRefGoogle Scholar
  74. 74.
    Loetscher P, Seitz M, Clark-Lewis I, Baggiolini M, Moser B (1994) Monocyte chemotactic proteins MCP-1, MCP-2 and MCP-3 are major attractants for human CD4+ and CD8+ T lymphocytes. FASEB J 8: 1055–1060.PubMedGoogle Scholar
  75. 75.
    Uguccioni M, D’Apuzzo M, Loetscher M, Dewald B, Baggiolini M (1995) Actions of the chemotactic cytokines MCP-1, MCP-2, MCP-3, RANTES, MIP-1 alpha and MIP-1 beta on human monocytes. Eur J Immunol 25: 64–68.PubMedCrossRefGoogle Scholar
  76. 76.
    Dahinden CA, Geiser T, Brunner T, von Tschamer V, Caput D, Ferrara P, Minty A, Baggiolini M (1994) Monocyte chemotactic protein 3 is a most effective basophil-and eosinophil-activating chemokine. J Exp Med 179: 751–756.PubMedCrossRefGoogle Scholar
  77. 77.
    Becker S, Quay J, Koren HS, Haskill JS (1994) Constitutive and stimulated MCP-1, GRO alpha, beta, and gamma expression in human airway epithelium and bronchoalveolar macrophages. Am J Physiology 266(Pt 1):L278–L 286.Google Scholar
  78. 78.
    Lukacs NW, Kunkel SL, Allen R, Evanoff HL, Shaklee CL, Cherman JS, Burdick MD, Strieter RM (1995) Stimulus and cell-specific expression of C-X-C and C-C chemokines by pulmonary stromal cell populations. Am J Physiology 268 (Pt 1): L856–L861.Google Scholar
  79. 79.
    Lukacs NW, Streiter RM, Elner V, Evanoff HL, Burdick MD, Kunkel SL (1995) Production of chemokines, interleukin-8 and monocyte chemoattractant protein-1 during monocyte:endothelial cell interactions. Blood 86: 2757–2773.Google Scholar
  80. 80.
    Lukacs NW (1994) Intercellular adhesion molecule-1 mediates the expression of monocyte-derived MIP-1 alpha during monocyte-endothelial cell interactions. Blood 83: 1174–1178.PubMedGoogle Scholar
  81. 81.
    Lukacs NW, Streiter RM, Shaklee CL, Chensue SW, Kunkel SL (1995) Macrophage inflammatory protein-1 influences eosinophil recruitment in antigen-specific airway inflammation. Eur J Immunol 25: 245–251.PubMedCrossRefGoogle Scholar
  82. 82.
    Sim TC, Reece LM, Hilsmeier KA, Grant JA, Alam R (1995) Secretion of chemokines and other cytokines in allergen-induced nasal responses: inhibition by topical steroid treatment. Am J Respir Crit Care Med 152: 927–933.PubMedGoogle Scholar
  83. 83.
    Rothenburg ME, Luster AD, Lilly CM, Drazen JM, Leder P (1995) Constitutive and allergen-induced expression of eotaxin mRNA in the guinea pig lung. J Exp Med 181: 1211–1216.CrossRefGoogle Scholar
  84. 84.
    Jose PJ, Griffiths-Johnson DA, Collins PD, Walsh DT, Moqbel R, Totty NF, Truong O, Hsuan JJ, Williams TJ (1994) Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation. J Exp Med 179: 881–887.PubMedCrossRefGoogle Scholar
  85. 85.
    Holgate ST (1993) Asthma: past, present and future. Eur Respir J 6: 1507–1520.PubMedGoogle Scholar
  86. 86.
    Erger A, Casale T (1995) Interleukin-8 is a potent mediator of eosinophil chemotaxis through endothelium and epithelium. Am J Physiol 268 (Pt 1): L117–L122.PubMedGoogle Scholar
  87. 87.
    Schweizer R, Welmers B, Raaijmakers J, Zanen P, Lammers J, Koenderman L (1994) RANTES- and interleukin-8-induced responses in normal human eosinophils: effects of priming with interleukin-5 Blood 83: 3697–704.Google Scholar
  88. 88.
    Douglass J, Dhami D, Gurr C, Bulpitt M, Shute J, Howarth P, Lindley I, Church M, Holgate S (1994) Influence of interleukin-8 challenge in the nasal mucosa in atopic and nonatopic subjects. Am J Respir Crit Care Med 150: 1108–1113.PubMedGoogle Scholar
  89. 89.
    Xiu Q, Fujimura M, Nomura M, Saito M, Matsuda T, Akao N, Kondo K, Matsushima K (1995) Bronchial hyperresponsiveness and airway neutrophil accumulation induced by interleukin-8 and the effect of the thromboxane A2 antagonist S-1452 in guinea-pigs. Clin Exper Allergy 25: 51–59.CrossRefGoogle Scholar
  90. 90.
    Wang J, Trigg C, Devalia J, Jordan S, Davies R (1994) Effect of inhaled beclomethasone dipropionate on expression of proinflammatory cytokines and activated eosinophils in the bronchial epithelium of patients with mild asthma. J Allergy Clin Immunol 94 (Pt 1): 1025–1034.PubMedCrossRefGoogle Scholar
  91. 91.
    Leonard EJ, Yoshimura T (1990) Neutrophil attractant/activation protein-1 (NAP-1 [interleukin-8]). Am J Respir Cell Mol Biol 2: 479–486.PubMedGoogle Scholar
  92. 92.
    Miyamasu M, Hirai K, Takahashi Y, Iida M, Yamaguchi M, Koshino T, Takaishi T, Morita Y, Ohta K, Kasahara T (1995) Chemotactic agonists induce cytokine generation in eosinophils. J Immunol 154: 1339–1349.PubMedGoogle Scholar
  93. 93.
    Chung SW, Wong PMC, Shen-Ong G, Ruscetti S, Ishizaka T, Eaves CJ (1986) Production of granulocyte-macrophage colony-stimulating factor by Abelson virus-induced tumorigenic mast cell lines. Blood 68: 1074–1081.PubMedGoogle Scholar
  94. 94.
    Gordon JR, Galli SJ (1991) Release of preformed and newly synthesized tumor necrosis factor alpha (TNF-a)/cachectin by mouse mast cells stimulated by the FceRI. A mechanism of the sustained action of mast cell-derived TNF-a during IgE-dependent biological responses. J Exp Med 174: 103–107.Google Scholar
  95. 95.
    Steffen M, Abboud M, Potter GK, Yung YP, Moore MAS (1989) Presence of tumor necrosis factor or a related factor in human basophils/mast cells. Immunology 66: 445–450.PubMedGoogle Scholar
  96. 96.
    Klein LM, Lavker RM, Matis WL, Murphy GF (1989) Degranulation of human mast cells induces an endothelial antigen central to leukocyte adhesion. Proc Natl Acad Sci USA 86: 8972–8976.PubMedCrossRefGoogle Scholar
  97. 97.
    Walsh LJ, Trinchieri G, Waldorf HA, Whitaker D, Murphy GF (1991) Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule 1. Proc Nati Acad Sci USA 88: 4220–4224.CrossRefGoogle Scholar
  98. 98.
    Benyon RC, Bissonnette EY, Befus AD (1991) Tumor necrosis factor-alpha dependent cytotoxicity of human skin mast cells is enhanced by anti-IgE antibodies. J Immunol 147: 2253–2258.PubMedGoogle Scholar
  99. 99.
    Gordon JR, Galli SJ (1990) Mast cells as a source of both preformed and immunologically inducible TNF-a/cachectin. Nature 346: 274–276.PubMedCrossRefGoogle Scholar
  100. 100.
    Bradding P, Feather IH, Wilson S, et al. (1993) Immunolocalization of cytokines in the nasal mucosa of normal and perennial rhinitic subjects. J Immunol 151: 3852–3865.Google Scholar
  101. 101.
    Walsh LJ, Trinchieri G, Waldorf HA, Whitaker D, Murphy GF (1991) Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule-1. Proc Natl Acad Sci USA 88: 4220–4224.PubMedCrossRefGoogle Scholar
  102. 102.
    Burd PR, Thompson WC, Max EE, and Mills FC (1995) Activated mast cells produce interleukin 13. J Exp Med 181: 1373–1830.PubMedCrossRefGoogle Scholar
  103. 103.
    Galli SJ, Gordon JR, Wershil BK (1991) Cytokine production by mast cells and basophils. Current Opin Immunol 3: 865–873.CrossRefGoogle Scholar
  104. 104.
    Klein LM, Lavker RM, Matis WL, Murphy GF (1989) Degranulation of human mast cells induces an endothelial antigen central to leukocyte adhesion. Proc Natl Acad Sci USA 86: 8972–8976.PubMedCrossRefGoogle Scholar
  105. 105.
    Broide DH (1995) a4 integrin-induced cytokine production and eosinophil function. Springer Semin Immunopathol 16:405–415.Google Scholar
  106. 106.
    Costa JJ, Matossian K, Resnick MB, Beil WJ, Wong DTW, Gordon JR (1993) Human eosinophils can express the cytokines tumor necrosis factor-a and macrophage inflammatory protein-la. J Clin Invest 91: 2673.PubMedCrossRefGoogle Scholar
  107. 107.
    Lim KG, Wan HC, Resnick M, Wong DT, Cruikshank WW, Kornfeld H, Center DM, Weller PF (1995) Human eosinophils release the lymphocyte and eosinophil active cytokines, RANTES and lymphocyte chemoattractant factor. Int Arch Allergy Immunol 107: 342.Google Scholar
  108. 108.
    Montefort S, Feather IH, Wilson SJ, Haskard DO, Lee TH, Holgate ST, Howarts PH (1992) The expression of leukocyte-endothelial adhesion molecules is increased in perennial allergic rhinitis. Am J Respir Cell Mol Biol 7: 393–398.PubMedGoogle Scholar
  109. 109.
    Schleimer RP, Rutledge BK (1986) Cultured human vascular endothelial cells acquire adhesiveness for leukocytes following stimulation with interleukin-1, endotoxin, and tumor-promoting phorbol esters. J Immunol 136: 649–654.PubMedGoogle Scholar
  110. 110.
    Joseph M, Tonnel A-B, Torpier G, Capron A (1983) Involvement of immunoglobulin E in the secretory processes of alveolar macrophages from asthmatic patients. J Clin Invest 71: 221–230.Google Scholar
  111. 111.
    Denburg JA, Gauldie J, Dolovich J, Ohtoshi T, Cox G, Jordana M (1991) Structural cell-derived cytokines in allergic inflammation. Int Arch Allergy Appl Immunol 94: 127–132.PubMedCrossRefGoogle Scholar
  112. 112.
    Dolovich J, Ohtoshi T, Jordana M Gauldie J, Denburg J (1990) Nasal polyps: local inductive micro-environment in the pathogenesis of the inflammation In: Mygind N, Pipkorm U, Ridah L, eds., Rhinitis and Asthma. Munksgaard, Copenhagen, pp. 233–241.Google Scholar
  113. 113.
    Ohnishi M, Rhuno J, Bienenstock J, Dolovich J, Denburg JA (1989) Hematopoietic growth factor production by cultured cells of human nasal polyp epithelial scrapings: kinetics, cell source, and relationship to clinical status. J Allergy Clin Immunol 83: 1091–1100.PubMedCrossRefGoogle Scholar
  114. 114.
    Tosi MF, Stark JM, Smith CW, Hamedani A, Gruenert DC, Infeld MD (1992) Induction of ICAM-1 expression on human airway epithelial cells by inflammatory cytokines: effects on neutrophil-epithelial cell adhesion. Am J Respir Cell Mol Biol 7: 214–221.PubMedGoogle Scholar
  115. 115.
    Wegner CD, Gundel RH, Reilly P, Haynes N, Letts LG, Rothlein R (1990) Intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma. Science 247: 456–459.PubMedCrossRefGoogle Scholar
  116. 116.
    Gundel RH, Wegner CD, Torcellini CA, Letts LG (1992) The role of intercellular adhesion molecule-1 in chronic airway inflammation. Clin Exp Allergy 22: 569.PubMedCrossRefGoogle Scholar
  117. 117.
    Nakajima S, Look DC, Roswit WT, Bragdon MJ, Holtzman MJ (1994) Selective differences in vascular endothelial versus airway epithelial T cell adhesion mechanisms. Am J Physiol 267: L422–L432.PubMedGoogle Scholar
  118. 118.
    Marini M, Vittori E, Hollemborg J, Mottoli S (1992) Expression of the potent inflammatory cytokines, granulocyte-macrophage-colony-stimulating factor, interleukin-6 and interleukin-8, in bronchial epithelial cells of patients with asthma. J Allergy Clin Immunol 89: 1001–1009.PubMedCrossRefGoogle Scholar
  119. 119.
    Soloperto M, Mattoso VL, Fasioli A, Mattoli S (1991) A chronical epithelial cell derived factor in asthma that promotes eosinophil action and survival as GM-CSF. Am J Physiol 260: L530–L538.PubMedGoogle Scholar
  120. 120.
    Kwon OJ, Jose PJ, Robbins RA, Schall TJ, Williams TJ, Barnes PJ (1995) Glucocorticoid inhibition of RANTES expression in human lung epithelial cells. Am J Respir Cell Mol Biol 12: 488–496.PubMedGoogle Scholar
  121. 121.
    Belini A, Yoshimura H, Vittori E, Marini M, Mattoli S (1993) Bronchial epithelial cells of patients with asthma release chemoattractant factors for T lymphocytes. J Allergy Clin Immunol 92: 412–424.CrossRefGoogle Scholar
  122. 122.
    Coeffier E, Joseph D, Vargaftig BB (1994) Role of interleukin-5 in enhanced migration of eosinophils from airways of immunized guinea-pigs. Br J Pharmacol 113: 749–756.PubMedCrossRefGoogle Scholar
  123. 123.
    Schweizer RC, Welmers BA, Raaijmakers JA, Zanen P, Lammers JW, Koenderman L (1994) RANTESand interleukin-8-induced responses in normal human eosinophils: effects of priming with interleukin-5. Blood 83: 3697–3704.PubMedGoogle Scholar
  124. 124.
    Collins PD, Marleau S, Griffiths-Johnson DA, Jose PJ, Williams TJ (1995) Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J Exp Med 182: 1169–1174.PubMedCrossRefGoogle Scholar
  125. 125.
    Bentley AM, Durham SR, Robinson DS, Menz G, Storz C, Cromwell O, Kay AB, Wardlaw AJ (1993) Allergens, IgE, mediators and inflammatory mechanisms. Expression of endothelial and leukocyte adhesion molecules intercellular adhesion molecule-1, E-selectin, and vascular cell adhesion molecule-1 in the bronchial mucosa in steady-state and allergen-induced asthma. J Allergy Clin Imunol 92: 857–868.CrossRefGoogle Scholar
  126. 126.
    Montefort S, Feather IH, Wilson SJ, Haskard DO, Lee TH, Holgate ST, Howarth PH (1992) The expression of leukocyte-endothelial adhesion molecules is increased in perennial allergic rhinitis. Am J Respir Cell Mol Biol 7: 393–398.PubMedGoogle Scholar
  127. 127.
    Weller PF, Rand TH, Goelz SE, Chi-Rosso G, Lobb RR (1991) Human eosinophil adherance to vascular endothelium mediated binding to vascular cell adhesion molecule 1 and endothelial leukocyte adhesion molecule 1. Proc Natl Acad Sci. USA 88: 7430.Google Scholar
  128. 128.
    Ebisawa M, Bochner BS, Georas SN, Schleimer RP (1992) Eosinophil transendothelial migration induced by cytokines. I. Role of endothelial and eosinophil adhesion molecules in IL-1(3-induced transendothelial migration. J Immunol 149: 4021–4028.PubMedGoogle Scholar
  129. 129.
    Ohkawara Y, Yamauchi K, Maruyama N, Hoshi H, Ohno I, Honma M, Tanno Y, Tamura G, Shirato K, Ohtani H (1995) In situ expression of the cell adhesion molecules in bronchial tissues from asthmatics with air flow limitation: in vivo evidence of VCAM-1/VLA-4 interaction in selective eosinophil infiltration. Am J Respir Cell Mol Biol 12: 4–12.PubMedGoogle Scholar
  130. 130.
    Nakajima H, Sano H, Nishimura T, Yoshida S, Iwamoto I (1994) Role of vascular cell adhesion molecule 1/very late activation antigen 4 and intercellular adhesion molecule 1/lymphocyte function-associated antigen 1 in antigen-induced eosinophil and T cell recruitment into the tissue. J Exp Med 179: 1145.PubMedCrossRefGoogle Scholar
  131. 131.
    Gundel RH, Wegner CD, Torcellini CA, Clarke CC, Haynes N, Rothlein R, Smith CW, Letts LG (1991) Endothelial leukocyte adhesion molecule-1 mediates antigen-induced acute airway inflammation and late-phase airway obstruction in monkeys. J Clin Invest 88: 1407–1411.PubMedCrossRefGoogle Scholar
  132. 132.
    Abraham WM, Sielczak MW, Ahmed A, et al. (1994) a4-integrins mediate antigen-induced late bronchial responses and prolonged airway hyperresponsiveness in sheep. J Clin Invest 93: 776–787.Google Scholar
  133. 133.
    Pretolani M, et al. (1994) Antibody to VLA-4 prevents antigen-induced bronchial hyperreactivity and cellular infiltration in the guinea pig airways. J Exp Med 180: 795–805.PubMedCrossRefGoogle Scholar
  134. 134.
    Rand TH, Silberstein DS, Kornfeld H, Weller PF (1991) Human eosinophils express functional interleukin-2 receptors, J Clin Invest 88: 825–832.PubMedCrossRefGoogle Scholar
  135. 135.
    Rand TH, Cruikshank WW, Center DM, Weller PF (1991) CD4-mediated stimulation of human eosinophils: Lymphocyte chemoattractant factor and other CD4-binding ligands elicit eosinophil migration. J Exp Med 173: 1521–1528.CrossRefGoogle Scholar
  136. 136.
    Lopez AF, Sanderson CJ, Gamble JR, Campbell HD, Young IG, Vadas MA (1988) Recombinant human interleukin-5 is a selective activator of human eosinophil function. J Exp Med 167: 219–224.PubMedCrossRefGoogle Scholar
  137. 137.
    Kita H, Ohnishe T, Okubo Y, Weiler J, Abrams JS, Gleich GJ (1991) GM-CSF and IL-3 release from human peripheral blood eosinophils and neutrophils. J Exp Med 174: 745–748.PubMedCrossRefGoogle Scholar
  138. 138.
    Anwar ARE, Walsh GM, Moqbel RM, Kay AB, Wardlaw AJ (1993) Adhesion to fibronectin prolongs eosinophil survival. J Exp Med 177: 839–843.PubMedCrossRefGoogle Scholar
  139. 139.
    Baroody FM, Lee BJ, Lim MC, Bochner BS (1995) Implicating adhesion molecules in nasal allergic inflammation. Eur Arch Otorhinolaryngol 252 (Suppl 1): S50–S58.PubMedCrossRefGoogle Scholar
  140. 140.
    Butcher E (1991) Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67: 1033–1036.PubMedCrossRefGoogle Scholar
  141. 141.
    Montefort S, Gratziou C, Goulding D, Polosa R, Haskard DO, Howarth PH, Holgate ST, Carroll MP (1994) Bronchial biopsy evidence for leukocyte infiltration and upregulation of leukocyte-endothelial cell adhesion molecules 6 hours after local allergen challenge of sensitized asthmatic airways. J Clin Invest 93: 1411–1421.PubMedCrossRefGoogle Scholar
  142. 142.
    Bentley A, Jacobson M, Cumberworth V, Barkans J, Moqbel R, Schwartz L, Irani A, Kay A, Durham S (1992) Immunohistology of the nasal mucosa in seasonal allergic rhinitis: increase in activated eosinophils and epithelial mast cells. J Allergy Clin Immunol 89: 877–883.PubMedCrossRefGoogle Scholar
  143. 143.
    Moser R, Schleiffenbaum B, Groscurth P, Fehr J (1989) Interleukin 1 and tumor necrosis factor stimulate human vascular endothelial cells to promote transendothelial neutrophil passage. J Clin Invest 83: 444–455.PubMedCrossRefGoogle Scholar
  144. 144.
    Luscinskas FW, Cybulsky MI, Kiely J-M, Peckins CS, Davis VM, Gimbrone MA Jr (1991) Cytokine-activated human endothelial monolayers support enhanced neutrophil transmigration via a mechanism involving both endothelial-leukocyte adhesion molecule-1 and intracellular adhesion molecule-1. J Immunol 146: 1617–1625.PubMedGoogle Scholar
  145. 145.
    Walsh GM, Mermod J-J, Hartness A, Kay AB, Wardlaw AJ (1991) Human eosinophil, but not neutrophil, adherence to IL-1-stimulated human unbilical vascular endothelial cells is a4ß1 (very late antigen-4) dependent. J Immunol 146: 3419–3423.PubMedGoogle Scholar
  146. 146.
    Dobrina A, Menegazzi R, Carlos TM, et al. (1991) Mechanisms of eosinophil adherence to cultures of vascular endothelial cells. Eosinophils bind to the cytokine-induced endothelial ligand vascular adhesion-1 via the very late activation antigen-4 integrin receptor. J Clin Invest 88: 20–26.PubMedCrossRefGoogle Scholar
  147. 147.
    Bochner BS, Klunk DA, Sterbinsky SA, Coffman RL, and Schleimer RP (1995) IL-13 selectively induces vascular cell adhesion molecule-1 expression in human endothelial cells. J Immunol 154: 799–803.PubMedGoogle Scholar
  148. 148.
    Sironi M, Sciacca FL, Matteucci C, Conni M, Vecchi A, Bemasconi S, Minty A, Caput D, Ferrara P, Colotta F, Mantovani A (1994) Regulation of endothelial and mesothelial cell function by interleukin13: Selective induction of vascular cell adhesion molecule-1 and amplification of interleukin-6 production. Blood 84: 1913–1921.PubMedGoogle Scholar
  149. 149.
    Montefort S, Roche WR, Howarth PH, Djukanovic R, Gratziou C, Carroll M, Smith L, Britten KM, Haskard D, Lee TH, Holgate ST. Intercellular adhesion molecule-1 (ICAM-1) and endothelial leukocyte adhesion molecule-1 (ELAM-1) expression in the bronchial mucosa of normal and asthmatic subjects. Eur Respir J 5: 815–823.Google Scholar
  150. 150.
    Jahnsen FL, Haraldsen G, Aanesen JP, Haye R, Brandtzaeg P (1995) Eosinophil infiltration is related to increased expression of vascular cell adhesion molecule-1 in nasal polyps. Am J Respir Mol Cell Biol 12: 624–632.Google Scholar
  151. 151.
    Lee B-J, Naclerio RM, Bochner BS, Taylor RM, Lim MC, Baroody FM (1994) Nasal challenge with allergen upregulates the local expression of vascular endothelial adhesion molecules. J Allergy Clin Immunol 94: 1006–1016.PubMedCrossRefGoogle Scholar
  152. 152.
    Ciprandi G, Pronzato C, Ricca V, Passalacqua G, Bagnasco M, Canonica GW (1994) Allergen-specific challenge induces intercellular adhesion molecule 1 (ICAM-1 or CD54) on nasal epithelial cells in allergic subjects. Relationships with early and late inflammatory phenomenon. Am J Respir Crit Care Med 150: 1653–1659.Google Scholar
  153. 153.
    Ciprandi G, Buscaglia S, Pesce GP, Pronzato C, Ricca V, Parmiani S, Bagnasco M, Canonica GW (1995) Miminal persistent inflammation is present at mucosal level in asymptomatic rhinitic patients with allergy due to mites. J Allergy Clin Immunol 96: 971–979.PubMedCrossRefGoogle Scholar
  154. 154.
    Canonica GW, Ciprandi G, Pesce GP, Buscaglia S, Paolieri F, Bagnasco M (1995) ICAM-1 on epithelial cells in allergic subjects: a hallmark of allergic inflammation. Int Arch Allergy Clin Immunol 107: 99.CrossRefGoogle Scholar
  155. 155.
    Berman JS, Weller PF (1992) Airways eosinophils and lymphocytes in asthma. Birds of a feather? Am Rev Respir Dis 145: 1246–1248.PubMedGoogle Scholar
  156. 156.
    Ohkawara Y, Yamauchi K, Tanno Y, et al. (1992) Human lung mast cells and pulmonary macrophages produce tumor necrosis factor-a in sensitized lung tissue after IgE receptor triggering. Am J Respir Cell Mol Biol 7: 385–392.PubMedGoogle Scholar
  157. 157.
    Leff AT (1994) Inflammatory mediation of airway hyperresponsiveness by granulocytes. The case for the eosinophil. Chest 106: 1202–1208.PubMedCrossRefGoogle Scholar
  158. 158.
    Otsuka H, Dolovich J, Richardson M, Bienenstock J, Denburg JA (1987) Metachromatic cell progenitors and specific growth and differentiation factors in human nasal mucosa and polyps. Am Rev Respir Dis 136: 710–717.PubMedCrossRefGoogle Scholar
  159. 159.
    Combadiere C, Ahuja SK, Murphy PM (1995) Cloning and functional expression of a human eosinophil CC chemokine receptor. J Biol Chem. 270:16, 491–16, 494.Google Scholar
  160. 160.
    Conlon K, Lloyd A, Chattopadhyay U, Lukacs N, Kunkel S, Schall T, Taub D, Morimoto C, Osborne J, Oppenheim J, et al. (1995) CD8+ and CD45RA+ human peripheral blood lymphocytes are potent sources of macrophage inflammatory protein 1 alpha, interleukin-8 and RANTES. Eur J Immunol 25: 751–756.PubMedCrossRefGoogle Scholar
  161. 161.
    Allavena P, Bianchi G, Zhou D, van Damme J, Jilek P, Sozzani S, Mantovani A (1994) Induction of natural killer cell migration by monocyte chemotactic protein-1, -2 and -3. Eur J Immunol 24: 3233–3236.PubMedCrossRefGoogle Scholar
  162. 162.
    Brieland JK, Flory CM, Jones ML, Miller GR, Remick DG, Warren JS, Fantone JC (1995) Regulation of monocyte chemoattractant protein-1 gene expression and secretion in rat pulmonary alveolar macrophages by lipopolysaccharide, tumor necrosis factor-alpha, and interleukin-1 beta. Am J Respir Cell Mol Biol 12: 104–109.PubMedGoogle Scholar
  163. 163.
    Brown Z, Garritsen ME, Carley WW, Streiter RM, Kunkel SL, Westwick J (1994) Chemokine gene expression and secretion by cytokine-activated human microvascular endothelial cells. Differential regulation of monocyte chemoattractant protein-1 and interleukin-8 in response to interferon-gamma. Am J Pathol 145: 913–921.PubMedGoogle Scholar
  164. 164.
    Minty A, Chalon P, Guillemot JC, Kaghad M, Liauzun P, Magazin M, Miloux B, Minty C, Ramond P, Vita N, et al. (1993) Molecular cloning of the MCP-3 chemokine gene and regulation of its expression. Eur Cytokine Network 4: 99–100.Google Scholar
  165. 165.
    Proost P (1995) Chemical synthesis, purification and folding of the human monocyte chemotactic proteins MCP-2 and MCP-3 into biologically active chemokines. Cytokine 7: 97–104.PubMedCrossRefGoogle Scholar
  166. 166.
    Moser R, Fehr J, Olgiati L, Bruijnzeel PL (1992) Migration of primed human eosinophils across cytokine-activated endothelial cell monolayers. Blood 79: 2937–2945.PubMedGoogle Scholar
  167. 167.
    Taub DD, Proost P, Murphy WJ, Anver M, Longo DL, van Damme J, Oppenheim JJ (1995) Monocyte chemotactic protein−1 (MCP-1), −2, and −3 are chemotactic for human T lymphocytes. J Clin Invest 95: 1370–1376.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Daniel L. Hamilos

There are no affiliations available

Personalised recommendations