The In Vivo Role of the Receptors for IL-3, GM-CSF, and IL-5 (βc and βIL3)

  • Ryuichi Nishinakamura
  • Stefan Burdach
  • Uta Dirksen
  • Richard Murray
Chapter
Part of the Contemporary Immunology book series (CONTIM)

Abstract

Interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) are cytokines that exhibit a number of similar biological activities when tested on hematopoietic cells in vitro. IL-3 stimulates the development of multiple hematopoietic lineages in colony assays. GM-CSF was originally defined as a factor that stimulates colony formation of granulocytes and macrophages and has subsequently been shown to share many of the properties of IL-3 stimulation (1). IL-5 was cloned as a B-cell stimulation factor (2), but additionally exhibited eosinophil stimulatory activity (3). IL-3 and GM-CSF also share the property of stimulating eosinophils in vitro. The genes for IL-3, GM-CSF, and IL-5 are tightly linked on chromosome 11 in the mouse, and on chromosome 5 in the human.

Keywords

Mutant Mouse Alveolar Macrophage Surfactant Protein Mutant Animal Human Genetic Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Metcalf, D. (1991) Control of granulocytes and macrophages: molecular, cellular, and clinical aspects. Science 254, 529–533.PubMedCrossRefGoogle Scholar
  2. 2.
    Kinashi, T., Harada, N., Severinson, E., Tanabe, T., Sideras, P., Konishi, M., Azuma, C., and Tominaga, A., Bergstedt-Lindqvist, S., Takahashi, M., et al. (1986) Cloning of complementary DNA encoding T-cell replacing factor and identity with B-cell growth factor II. Nature 324, 70–73.PubMedCrossRefGoogle Scholar
  3. 3.
    Yamaguchi, Y., Hayashi, Y., Sugama, Y., Miura, Y., Kasahara, T., Kitamura, S., Torisu, M., Mita, S., Tominaga, A., and Takatsu, K. (1988) Highly purified murine interleukin 5 (IL-5) stimulates eosinophil function and prolongs in vitro survival. IL-5 as an eosinophil chemotactic factor. J. Exp. Med. 167, 1737–1742.PubMedCrossRefGoogle Scholar
  4. 4.
    Kitamura,T.,Hayashida, K.,Sakamaki,K.,Yokota,T., Arai,K., and Miyajima,A. (1991) Reconstitution of functional human granulocyte/macrophage colonystimulating factor (GM-CSF): evidence that AIC2B is a subunit of murine GM-CSF receptor. Proc. Natl. Acad. Sci. U.S.A. 88, 5082–5086.PubMedCrossRefGoogle Scholar
  5. 5.
    Itoh, N., Yonehara, S., Schreurs, J., Gorman, D. M., Maruyama, K., Ishii, A., Yahara, I., Arai, K., and Miyajima, A. (1990) Cloning of an interleukin-3 receptor: a member of a distinct receptor gene family. Science 247, 324–327.PubMedCrossRefGoogle Scholar
  6. 6.
    Gorman, D. M., Itoh, N., Kitamura, T., Schreurs, J., Yonehara, S., Yahara, I., Arai, K., and Miyajima, A. (1990) Cloning and expression of a gene encoding an interleukin 3 receptor-like protein: Identification of another member of the cytokine receptor gene family Proc. Natl. Acad. Sci. USA 87, 5459–5463.PubMedCrossRefGoogle Scholar
  7. 7.
    Isfort, R. J. and Ihle, J. N. (1990) Multiple hematopoietic growth factors signal through tyrosine phosphorylation. Growth Factors 2, 213–220.PubMedCrossRefGoogle Scholar
  8. 8.
    Kanakura, Y., Druker, B., Cannistra, S. A., Furukawa, Y., Torimoto, Y., and Griffin, J. D. (1990) Signal transduction of the human granulocyte-macrophage colony-stimulating factor and interleukin-3 receptors involves tyrosine phosphorylation of a common set of cytoplasmic proteins. Blood 76, 706–715.PubMedGoogle Scholar
  9. 9.
    Quelle, F. W., Sato, N., Witthuhn, B. A., Inhorn, R. C., Eder, M., Miyajima, A., Griffin, J. D., and Ihle, J. N. (1994) JAK2 associates with the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol. Cell. Biol. 14, 4335–4341.PubMedGoogle Scholar
  10. 10.
    Mui, A. L., Wakao, H., O’Farrell, A. M., Harada, N., and Miyajima, A. (1995) Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. EMBO. J. 14, 1166–1175.PubMedGoogle Scholar
  11. 11.
    Nishinakamura, R., Nakayama, N., Hirabayashi, Y., Inoue, T., Aud, D., McNeil, T., Azuma, S., Yoshida, S., Toyoda, Y., Arai, K., et al. (1995) Mice deficient for the IL-3/GM-CSF/IL-5 beta c receptor exhibit lung pathology and impaired immune response, while beta IL3 receptor-deficient mice are normal. Immunity 2, 211–222.PubMedCrossRefGoogle Scholar
  12. 12.
    Miyajima, A., Mui, A. L., Ogorochi, T., and Sakamaki, K. (1993) Receptors for granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Blood 82, 1960–1974.PubMedGoogle Scholar
  13. 13.
    Dranoff, G., Crawford, A. D., Sadelain, M., Ream, B., Rashid, A., Bronson, R. T., Dickersin, G. R., Bachurski, C. J., Mark, E. L., Whitsett, J. A., et al. (1994) Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science 264, 713–716.PubMedCrossRefGoogle Scholar
  14. 14.
    Stanley, E., Lieschke, G. J., Grail, D., Metcalf, D., Hodgson, G., Gall, J. A., Maher, D. W., Cebon, J., Sinickas, V., and Dunn, A. R. (1994) Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc. Natl. Acad. Sci. USA 91, 5592–5596.PubMedCrossRefGoogle Scholar
  15. 15.
    Rooney, S. A., Young, S. L., and Mendelson, C. R. (199 Molecular and cellular processing of lung surfactant. FASEB. J. 8, 957–967.Google Scholar
  16. 16.
    Antman, K. S., Griffin, J. D., Elias, A., Socinski, M. A., Ryan, L., Cannistra, S. A., Oette, D., Whitley, M., Frei, E. I., and Schnipper, L. E. (1988) Effect of recombinant human granulocyte-macrophage colony-stimulating factor on chemotherapy-induced myelosuppression. N. Engl. J. Med. 319, 593–598.PubMedCrossRefGoogle Scholar
  17. 17.
    Nemunaitis, J., Singer, J. W., Buckner, C. D., Hill, R., Storb, R., Thomas, E. D., and Applegaum, F. R. (1988) Use of recombinant granulocyte-macrophage colony-stimulating factor in autlogous marrow transplantation for lymphoid malignancies. Blood 72, 834–836.PubMedGoogle Scholar
  18. 18.
    Burdach, S., Muschenich, M., Josephs, W., Frisch, J., Schulz, G., Jurgens, H., and Gobel, U. (1995) Granulocyte-macrophage-colony-stimulating factor for prevention of neutropenia and infections in children and adolescents with solid tumors. Cancer 76, 510–519.PubMedCrossRefGoogle Scholar
  19. 18a.
    Nishinakamura, R., Miyajima, A., Mee, P. J., Iybulewicz, V. L. J., and Murray, R. (1996) Hematopoiesis in mice Tacking the entire granulocytemacrophage-colony-stimulating factor/interleukin-3/interleukin-5 functions. Blood 88, 2458–2464.PubMedGoogle Scholar
  20. 19.
    Takatsu, K., Tominaga, A., Harada, N., Mita, S., Matsumoto, M., Takahashi, T., Kikuchi, Y., and Yamaguchi, N. (1988) T-cell-replacing factor (TRF)/interleukin 5 (IL-5): molecular and functional properties. Immunol. Rev. 102, 107–135.PubMedCrossRefGoogle Scholar
  21. 20.
    Yamaguchi, Y., Suda, T., Suda, J., Eguchi, M., Miura, Y., Harada, N., Tominaga, A., and Takatsu, K. (1988) Purified interleukin 5 supports the terminal differentiation and proliferation of murine eosinophilic precursors. J. Exp. Med. 167, 43–56.PubMedCrossRefGoogle Scholar
  22. 21.
    Urban, J., Jr., Madden, K. B., Svetic, A., Cheever, A., Trotta, P. P., Gause, W. C., Katona, I. M., and Finkelman, F. D (1992) The importance of Th2 cytokines in protective immunity to nematodes. Immunol. Rev. 127, 205–220.PubMedCrossRefGoogle Scholar
  23. 22.
    Coffman, R. L., Seymour, B. W., Hudak, S., Jackson, J., and Rennick, D. (1989) Antibody to interleukin-5 inhibits helminth-induced eosinophilia in mice. Science 245, 308–310.PubMedCrossRefGoogle Scholar
  24. 23.
    Finkelman, F. D., Katona, I. M., Urban, J., Jr., Holmes, J., Ohara, J., Tung, A. S., Sample, J. V., and Paul, W. E. (1988) IL-4 is required to generate and sustain in vivo IgE responses. J. Immunol. 141, 2335–2341.PubMedGoogle Scholar
  25. 24.
    Kuhn, R., Rajewsky, K., and Muller, W. (1991) Generation and analysis of interleukin-4 deficient mice. Science 254, 707–710.PubMedCrossRefGoogle Scholar
  26. 25.
    Schall, T. J. and Bacon, K. B. (1994) Chemokines, leukocyte trafficking, and inflammation. Curr. Opin. Immunol. 6, 865–873.PubMedCrossRefGoogle Scholar
  27. 26.
    Czuprynski, C. J., Henson, P. M., and Campbell, P. A. (1984) Killing of Listeria monocytogenes by inflammatory neutrophils and mononuclear phagocytes from immune and nonimmune mice. J Leukoc. Biol. 35, 193–208.PubMedGoogle Scholar
  28. 27.
    Conlan, J. W. and North, R. J. (1994) Neutrophils are essential for early anti-Listeria defense in the liver, but not in the spleen or peritoneal cavity, as revealed by a granulocyte-depleting monoclonal antibody. J. Exp. Med. 179, 259–268.PubMedCrossRefGoogle Scholar
  29. 28.
    Czuprynski, C. J., Brown, J. F., Maroushek, N., Wagner, R. D., and Steinberg, H. (1994) Administration of anti-granulocyte mAb RB6–8C5 impairs the resistance of mice to Listeria monocytogenes infection. J. Immunol. 152, 1836–1846.PubMedGoogle Scholar
  30. 29.
    Arai, K., Lee, F., Miyajima, A., Miyatake, S., Arai, N., and Yokota, T. (1990) Cytokines: coordinators of immune and inflamatory responses. Annu. Rev. Biochem. 59, 783–836.PubMedCrossRefGoogle Scholar
  31. 29a.
    Nishinakamura, R., Wiler, R., Dirksen, U., Morikawa, Y., Arai, K., Miyajima, A., Burdoach, S., and Murray, R. (1996) The pulmonary alveolar potencies in granulocyte-macrophage colony-stimulating factor/interleukins3/5 (3c receptor deficient-mice is reversed by bone marrow transplantation. J. Exp. Med. 183, 2657–2662.PubMedCrossRefGoogle Scholar
  32. 30.
    Yoshida, H., Hayashi, S., Kunisada, T., Ogawa, M., Nishikawa, S., Okamura, H., Sudo, T., Shultz, L. D., and Nishikawa, S. (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442–444.PubMedCrossRefGoogle Scholar
  33. 31.
    Wasserman, K. and Mason, G. (1994) Pulmonary Alveolar Proteinosis. Saunders, Philadelphia, PA, pp. 1933–1946.Google Scholar
  34. 32.
    Rosen, S. H., Castleman, B., and Liebow, A. A. (1958) Pulmonary alveolar proteinosis. N. Engl. J. Med. 258, 1123–1142.PubMedCrossRefGoogle Scholar
  35. 33.
    Lakshminarayan, S., Schwarz, M. I., and Stanfordd, R. E. (1976) Unsuspected pulmonary alveolar proteinosis complicating acute myelogenous leukemia. Chest 69, 433–435.PubMedCrossRefGoogle Scholar
  36. 34.
    Carnovale, R., Zornoza, J., Goldman, A. M., and Luna, M. A. (1977) Pulmonary alveolar proteinosis: its association with hematopoietic malignancy and lymphoma. Radiology 122, 303–306.PubMedGoogle Scholar
  37. 35.
    Coleman, M., Dehner, L. P., Sibley, R. K., Burke, B. A., L’Heureux, P. R., and Thompson, T. R. (1980) Pulmonary alveolar proteinosis: an uncommon cause of chronic neonatal respiratory distress. Am. Rev. Respir. Dis. 583–586.Google Scholar
  38. 36.
    Hamvas, A., Nogee, L. M., deMello, D. E., and Cole, F. S. (1995) Pathophysiology and treatment of surfactant protein-B deficiency. Biol. Neonate. 67 (Suppl. 1), 18–31.PubMedCrossRefGoogle Scholar
  39. 37.
    Nogee, L. M., de Mello, D. E., Dehner, L. P., and Colten, H. R. (1993) Brief report: deficiency of pulmonary surfactant protein B in congenital alveolar proteinosis. N. Engl. J. Med. 328, 406–410.PubMedCrossRefGoogle Scholar
  40. 38.
    Nogee, L. M., Gamier, G., Dietz, H. C., Singer, L., Murphy, A. M., de, M. D., and Colten, H. R. (1994) A mutation in the surfactant protein B gene responsible for fatal neonatal respiratory disease in multiple kindreds. J. Clin. Invest. 93, 1860–1863.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Ryuichi Nishinakamura
  • Stefan Burdach
  • Uta Dirksen
  • Richard Murray

There are no affiliations available

Personalised recommendations