Biomechanics pp 206-265 | Cite as

The Veins

  • Y. C. Fung
Chapter

Abstract

Veins normally contain about 80% of the total volume of blood in the systemic vascular system. Any change in the blood volume in the veins will affect blood flow through the heart. The most important feature of the systemic veins is, therefore, their compliance. A compliant structure runs the danger of collapsing; the problem with the vein is that it is often collapsed.

Keywords

Pulmonary Vein Transmural Pressure Pleural Pressure Korotkoff Sound Collapsible Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anliker, M., and Raman, K.R. (1966). Korotkoff sounds at diastole—a phenomenon of dynamic instability of fluid-filled shells. Int. J. Solids Struct. 2: 467–491.CrossRefGoogle Scholar
  2. Anliker, M., Wells, M.K., and Ogden, E. (1969). The transmission characteristics of large and small pressure waves in the abdominal vena cava. IEEE Trans. Biomed. Eng. BME-16: 262–273.CrossRefGoogle Scholar
  3. Attinger, E.O. (1969). Wall properties of veins. IEEE Trans. Biomedical Eng. BME-16: 253–261.CrossRefGoogle Scholar
  4. Bertram, C.D., Raymond, C.J., and Pedley, T.J. (1990, 1991, 1992). Mapping of instabilities for flow through collapsed tubes of differing length; and Application of nonlinear dynamics concepts. J. Fluids Struct. 3: 125–153; 4: 3-36; 5: 391-426.Google Scholar
  5. Cancelli, C., and Pedley, T.J. (1985). A separated-flow model for collapsible-tube oscillations. J. Fluid Mech. 157: 375–404.CrossRefGoogle Scholar
  6. Caro, C.G., Pedley, T.J., Schroter, R.C., and Seed, W.A. (1978). The Mechanics of the Circulation. Oxford University Press, Oxford.Google Scholar
  7. Conrad, W.A. (1969). Pressure flow relationship in collapsible tubes. IEEE Trans. Biomed. Eng. BME-16: 284–295.CrossRefGoogle Scholar
  8. Cumming, G., Henderson, R., Horsfield, K., and Singhal, S.S. (1968). The functional morphology of the pulmonary circulation. In The Pulmonary Circulation and Interstitial Space (A. Fishman and H. Hecht, eds.). University of Chicago Press, Chicago, pp. 327–338.Google Scholar
  9. Flaherty, J.E., Keller, J.B., and Rubinow, S.I. (1972). Post buckling behavior of elastic tubes and rings with opposite sides in contact. SIAM J. Appl. Math. 23: 446–455.CrossRefGoogle Scholar
  10. Flügge, W. (1960). Stresses in Shells. Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
  11. Fung, Y.C. (1954). The static stability of a two-dimensional curved panel in a supersonic flow, with applications to panel flutter. J. Aeronaut. Sci. 21: 556–565.Google Scholar
  12. Fung, Y.C. (1958). On two-dimensional panel flutter. J. Aeronaut. Sci. 25: 145–160.Google Scholar
  13. Fung, Y.C. (1993a). A First Course in Continuum Mechanics, 3rd ed. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  14. Fung, Y.C. (1993b). Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. Springer-Verlag. New York.Google Scholar
  15. Fung, Y.C., and Sechler, E.E. (1960). Instability of thin elastic shells. In Structural Mechanics. Proc. of Symp. on Naval Structure Mechanics (J.N. Goodier and N. Hoff, eds.). Pergamon Press, New York.Google Scholar
  16. Fung, Y.C., and Sechler, E.E. (eds.) (1974). Thin Shell Structures: Theory, Experiment and Design. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  17. Fung, Y.C., and Sobin, S.S. (1972a). Elasticity of the pulmonary alveolar sheet. Circ. Res. 30: 451–469.PubMedCrossRefGoogle Scholar
  18. Fung, Y.C., and Sobin, S.S. (1972b). Pulmonary alveolar blood flow. Circ. Res. 30: 470–490.PubMedCrossRefGoogle Scholar
  19. Fung, Y.C., Perrone, N., and Anliker, M. (1972). Biomechanics: Its Foundations and Objectives. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  20. Fung, Y.G, Sobin, S.S., Tremer, H., Yen, M.R.T., and Ho, H.H. (1983). Patency and compliance of pulmonary veins when airway pressure exceeds blood pressure. J. Appl. Physiol: Respir., Exerc. Environ. Physiol. 54: 1538–1549.Google Scholar
  21. Gardner, A.M.N., Turner, M.J., Wilmshurst, C.C., and Griffiths, D.J. (1977). Hydrodynamics of blood flow through the inferior vena cava. Med. Biol. Eng. Comp. 15: 248–253.CrossRefGoogle Scholar
  22. Gibson, A.H. (1910). On the flow of water through pipes and passages having converging or diverging boundaries. Proc. Roy. Soc. London A, 83: 366–378.CrossRefGoogle Scholar
  23. Glazier, J.B., Hughes, J.M.B., Maloney, J.E., and West, J.B. (1969). Measurements of capillary dimensions and blood volume in rapidly frozen lungs. J. Appl. Physiol. 26: 65–76.PubMedGoogle Scholar
  24. Holt, J.P. (1969). Flow through collapsible tubes and through in situ veins. IEEE Trans. Biomedical Eng. BME-16: 274–283.CrossRefGoogle Scholar
  25. Howell, J.B.L., Permutt, S., Proctor, D.F., and Riley, R.L. (1961). Effect of inflation of the lung on different parts of pulmonary vascular bed. J. Appl. Physiol. 16: 71–76.PubMedGoogle Scholar
  26. Jensen, O.E. (1990). Instabilities of flow in a collapsed tube. J. Fluid Mech. 220: 623–659.CrossRefGoogle Scholar
  27. Jensen, O.E., and Pedley, T.J. (1989). The existence of steady flow in a collapsible tube. J. Fluid Mech. 206: 339–374.CrossRefGoogle Scholar
  28. Kamm, R.D., and Pedley, T.J. (1989). Flow in collapsible tube: a brief review. J. Biomech. Eng. 111: 177–179.PubMedCrossRefGoogle Scholar
  29. Katz, A.I., Chen, Y., and Moreno, A.H. (1969). Flow through a collapsible tube: Experimental analysis and mathematical model. Biophys. J. 9: 1261–1279.PubMedCrossRefGoogle Scholar
  30. Kline, S.J. (1959). On the nature of stall. J. Basic Eng, Trans. ASME 81, Ser. D: 305–320. See also Kline et al., J. Basic Eng., Trans. ASME 81: 321-331.Google Scholar
  31. Kline, S.J., Moore, C.A., and Cochran, D.L. (1957). Wide-angle diffusers of high performance and diffuser flow mechanisms. J. Aeronaut. Sci. 24: 469–471.Google Scholar
  32. Knowlton, F.P., and Starling, E.H. (1912). The influence of variations in temperature and blood pressure on the performance of the isolated mammalian heart. J. Physiol. (London) 44: 206–219.Google Scholar
  33. Lai-Fook, S.J. (1979). A continuum mechanics analysis of pulmonary vascular interdependence in isolated dog lobes. J. Appl. Physiol. 45: 419–429.Google Scholar
  34. Macklin, C.C. (1946). Evidences of increase in the capacity of the pulmonary arteries and veins of dogs, cats and rabbits during inflation of the freshly excised lung. Rev. Canad. Biol. 5: 199–232.PubMedGoogle Scholar
  35. Matsuzaki, Y. (1995). Unsteady flow in a collapsible tube: analysis and experiment. Proc. Fourth China, Japan, USA, Singapore Conf. Biomechanics.Google Scholar
  36. Matsuzaki, Y, and Fung, Y.C. (1976). On separation of a divergent flow at moderate Reynolds numbers. J. Appl. Mech. 43: 227–231.CrossRefGoogle Scholar
  37. Matsuzaki, Y., and Fung, Y.C. (1977a). Unsteady fluid dynamic forces on a simply-supported circular cylinder of finite length conveying a flow, with applications to stability analysis. J. Sound Vibr. 54: 317–330.CrossRefGoogle Scholar
  38. Matsuzaki, Y., and Fung, Y.C. (1977b). Stability analysis of straight and buckled two-dimensional channels conveying an incompressible flow. J. Appl. Mech. 44: 548–552.CrossRefGoogle Scholar
  39. Matsuzaki, Y., and Fung, Y.C. (1979). Nonlinear stability analysis of a compressible flow. J. Appl. Mech. 46: 31–36.CrossRefGoogle Scholar
  40. Matsuzaki, Y, and Matsumoto, T. (1989). Flow in a two-dimensional collapsible channel with rigid inlet and outlet. J. Biomech. Eng. 111: 180–184, 1989.PubMedCrossRefGoogle Scholar
  41. McCutcheon, E.P., and Rushmer, R.F. (1967). Korotkoff sounds: An experimental critique. Circ. Res. 20: 149–169.PubMedCrossRefGoogle Scholar
  42. Mead, J., and Whittenberger, J.L. (1964). Lung inflation and hemodynamics. In Handbook of Physiological Sec. 3, Respiration, Vol. 1. (W.O. Fenn and H. Rahn, eds.). American Physiology Society, Washington, DC, pp. 477–486.Google Scholar
  43. Moreno, A.H., Katz, A.I., Gold, L.D., and Reddy, R.V. (1970). Mechanics of distension of dog veins and other very thin-walled tubular structures. Circ. Res. 27: 1069–1079.PubMedCrossRefGoogle Scholar
  44. Ohba, K., Yoneyama, N., Shimanaka, Y, and Maeda, H. (1984). Self-excited oscillations of flow in collapsible tube, I. Technol. Rep. Kansai Univ. No. 25, pp. 1-13.Google Scholar
  45. Pedley, T.J. (1980). The Fluid Mechanics of Large Blood Vessels, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  46. Permutt, S., and Riley, R.L. (1963). Hemodynamics of collapsible vessels with tone: Vascular waterfall, J. Appl. Physiol. 18: 924–932.PubMedGoogle Scholar
  47. Permutt, S., Bromberger-Barnea, B., and Bane, H.N. (1962). Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Med. Thorac. 19: 239–260.PubMedGoogle Scholar
  48. Pollack, A.A., and Wood, E.H. (1949). Venous pressure in the saphenous vein at the ankle in man during exercise and changes in posture. J. Appl. Physiol. 1: 649–662.PubMedGoogle Scholar
  49. Schoendorfer, D.W., and Shapiro, A.H. (1977). The collapsible tube as a prosthetic vocal source. Proc. San Diego Biomed. Symp. 16: 349–356.Google Scholar
  50. Shapiro, A.H. (1977). Steady flow in collapsible tubes, J. Biomech. Eng. 99: 126–147.CrossRefGoogle Scholar
  51. Sobin, S.S., Fung, Y.C., Tremer, H., and Rosenquist, T.H. (1972). Elasticity of the pulmonary interalveolar microvascular sheet in the cat. Circ. Res. 30: 440–450.PubMedCrossRefGoogle Scholar
  52. Sobin, S.S., Lindal, R.G., Fung, Y.C., and Tremer, H.M. (1978). Elasticity of the smallest noncapillary pulmonary blood vessels in the cat. Microvas. Res. 15: 57–68.CrossRefGoogle Scholar
  53. Sobin, S.S., Fung, Y.C., Lindal, R.G., Tremer, H.M., and Clark, L. (1980). Topology of pulmonary arterioles, capillaries and venules in the cat. Microvac. Res. 19: 217–233.CrossRefGoogle Scholar
  54. Strahler, A.N. (1964). Quantitative geomorphology of drainage basin and channel networks. In Handbook of Applied Hydrology: Compedium of Water Resources Technology (V.T. Chow, ed.). McGraw-Hill, New York.Google Scholar
  55. Timoshenko, S., and Gere, J.M. (1961). Theory of Elastic Stability, 2nd ed. McGraw-Hill, New York.Google Scholar
  56. Ur, A., and Gordon, M. (1970). Origin of Korotkoff sounds. Am. J. Physiol. 218: 524–529.PubMedGoogle Scholar
  57. Weibel, E.R. (1963). Morphometry of the Human Lung. Springer-Verlag, Berlin.Google Scholar
  58. Wexler, L., Bergel, D.H., Gabe, I.T., Makin, G.S., and Mills, C.J. (1968). Velocity of blood flow in normal human venae cavae. Circ. Res. 23: 349–359.PubMedCrossRefGoogle Scholar
  59. Wild, R., Pedley, T.J., and Riley, D.S. (1977). Viscous flow in collapsible tubes of slowly-varying elliptical cross-section. J. Fluid Mech. 81: 273–294.CrossRefGoogle Scholar
  60. Yen, R.T., and Foppiano, L. (1981). Elasticity of small pulmonary veins in the cat. J. Biomech. Eng. Trans. ASME 103: 38–42.CrossRefGoogle Scholar
  61. Yen, R.T., Fung, Y.C., and Bingham, N. (1980). Elasticity of small pulmonary arteries in the cat. J. Biomech. Eng. Trans. ASME 102: 170–177.CrossRefGoogle Scholar
  62. Yen, R.T., Zhuang, F.Y., Fung, Y.C., Ho, H.H., Tremer, H., and Sobin, S.S. (1983). Morphometry of cat’s pulmonary venous tree. J. Appl. Physiol. In press.Google Scholar
  63. Young, D.F., and Tsai, F.Y. (1973). Flow characteristics in models of arterial stenosis. I. Steady flow. J. Biomech. 6: 395–410.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Y. C. Fung
    • 1
  1. 1.Department of BioengineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations