Impacts and the Early Evolution of Life

  • K. J. Zahnle
  • N. H. Sleep

Abstract

The K/T event shows that, even today, biospheric cratering is an important process. Impacts were much larger and more frequent on the early Earth. In all likelihood impacts posed the greatest challenge to the survival of early life.

Keywords

Impact Velocity Lunar Crater Lunar Crust Steam Atmosphere Late Heavy Bombardment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, Y. (1988), Conditions required for sustaining a surface magma ocean, Proc. 21st ISAS Lun. Planet. Symp., 225–231 (1988).Google Scholar
  2. Abe, Y. and Matsui, T. (1988), Evolution of an impact-generated H2O–0O2 atmosphere and formation of a hot proto-ocean on Earth, J. Atm. Sci. 45, 3081–3101.ADSCrossRefGoogle Scholar
  3. Alvarez, L.W., Alvarez, W., Asaro, F., and Michel, H.V. (1980), Extraterrestrial cause for the Cretaceous—Tertiary extinction, Science 208, 1095–1108.ADSCrossRefGoogle Scholar
  4. Anders E. (1989), Prebiotic organic matter from comets and asteroids, Nature 342, 255–257.ADSCrossRefGoogle Scholar
  5. Baldwin, R.B. (1981), On the origin of the planetesimals that produced the milti-ringedbasins. In Schultz, P. and Merrill, R.B. (eds.) Multi-ring Basins, Proc. Lun. Planet. Sci. 12A, Pergamon Press, New York, 19–28.Google Scholar
  6. Baldwin, R.B. (1987a), On the relative and absolute ages of seven lunar front face basins I, Icarus 71, 1–18.MathSciNetADSCrossRefGoogle Scholar
  7. Baldwin, R.B. (1987b), On the relative and absolute ages of seven lunar front face basins II, Icarus 71, 19–29.ADSCrossRefGoogle Scholar
  8. Belton, M.J.S., Head, J.W., Pieters, C.M., Greeley, R., McEwen, A.S., Neukem, G., Klaasen, K. P., Anger, C.D., Can, M.H., Chapman, C.R., Davies, M.E., Fanale, F.P., Gierasch, P.J. Greenberg, R., Ingersoll, A.P., Johnson, T., Paczkowski, B., Pilcher, C.B., and Veverka, J. (1992), Lunar impact basins and crustal heterogeneity: New western limb and far side data from Galileo, Science 255, 570–576.ADSCrossRefGoogle Scholar
  9. Bratt, S.R., Solomon, S.C., and Head, J.W. (1985a), The evolution of impact basins: Cooling, subsidence, and thermal stress, J. Geophys. Res. 90, 12415–12433.ADSCrossRefGoogle Scholar
  10. Bratt, S.R., Solomon, S.C., Head, J.W. and Thuber, C.H. (1985b), The deep structure of lunar basins: Implications for basin formation and modification, J. Geophys. Res. 90, 3049–3064.ADSCrossRefGoogle Scholar
  11. Carlson, R.W. and Lugmair, G.W. (1979), Earth Planet Sci. Lett. 45, 123–132.ADSCrossRefGoogle Scholar
  12. Carlson, R.W. and Lugmair, G.W. (1988), Earth Planet Sci. Lett. 90, 119–130.ADSCrossRefGoogle Scholar
  13. Chapman, C.R., Williams, J.G., and Hartmann, W.K. (1978), The Asteroids, Ann Rev. Astron. Astrophys. 16, 33–75.ADSCrossRefGoogle Scholar
  14. Chyba, C. (1991), Terrestrial mantle siderophiles and the lunar impact record, Icarus 92, 217–233.ADSCrossRefGoogle Scholar
  15. Connan, J. (1984), Adv. Petroleum Geochem. 1, 299–335.Google Scholar
  16. Davis, P.A. and Spudis, P. (1987), J. Geophys. Res. 92, E387–E395.ADSCrossRefGoogle Scholar
  17. Drake, M.J. (1986), Is lunar bulk material similar to Earth’s mantle? In W.K. Hartmann, R.J. Phillips, and G.J. Taylor (eds.), Origin of the Moon, ( Lunar and Planetary Institute, Houston ), pp. 105–143.Google Scholar
  18. Donnison, J.R. (1986), The distribution of cometary magnetudes, Astron. Astrophys. 167, 359–363.ADSGoogle Scholar
  19. Donnison, J.R. and Sugden, R.A., The distribution of asteroidal diameters (1984), Mon. Not. Roy. Astron. Soc. 210, 673–682.ADSGoogle Scholar
  20. Dohnanyi, J.S. (1972), Interplanetary objects in review: statistics of their masses and dynamics, Icarus 17, 1–48.ADSCrossRefGoogle Scholar
  21. Duncan, M., Quinn, T., and S. Tremaine (1987), The formation and extent of the solar system comet cloud, Astron. J. 94, 1330–1338.ADSCrossRefGoogle Scholar
  22. Duncan, M., Quinn, T., and S. Tremaine (1988), The origin of short period comets, Astrophys. J. 328, L69–L73.ADSCrossRefGoogle Scholar
  23. Grieve, R.A.F. (1982), The record of impact on Earth: Implications for a major Cretaceous/Tertiary impact event. In Silver, L.T., and Schultz, P.H., eds., Geological Implications of Impacts of Large Asteroids and Comets on the Earth, Geological Society of America Special Paper 190, 25–37.Google Scholar
  24. Hahn, G. and Bailey, M.E. (1990), Rapid dynamical evolution of giant comet Chiron, Nature 348, 132–136.ADSCrossRefGoogle Scholar
  25. Hartmann, W.K. (1981). In Proceedings of the Conference on the Lunar Highlands Crust, 155–173 ( Pergamon Press, New York ).MATHGoogle Scholar
  26. Hartmann, W.K., Phillips R.J. and Taylor, G.J., eds. (1986), Origin of the Moon, Lunar and Planetary Institute, Houston.Google Scholar
  27. Hartmann, W.K., D.J. Tholen, K.J. Meech, and D.P. Criukshank (1990), 2060 Chiron: Colorimetry and possible cometary behavior, Icarus 83, 1–15.ADSCrossRefGoogle Scholar
  28. Hildebrand, A.R., Penfield, G.T., King, D.A., Pilkington, M., Camargo Z.,A., Jacobsen, S.B. and Boynton, W.V. (1991), Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico, Geology 19, 867–871.Google Scholar
  29. Hughes, D.W. (1982), Asteroidal size distribution, Mon. Not. Roy. Astron. Soc. 199, 1149–1157.ADSGoogle Scholar
  30. Hughes D.W. (1988), Cometary distribution and the ratio between the numbers of long-and short-period comets, Icarus 73, 149–162.ADSCrossRefGoogle Scholar
  31. Kasting, J.F. (1988), Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus, Icarus 74, 472–494.ADSCrossRefGoogle Scholar
  32. Kasting, J.F. (1990), Bolide impacts and the oxidation state of carbon in the Earth’s early atmosphere, Orig. Life 20, 199–231.CrossRefGoogle Scholar
  33. Korotev, R.L. (1987), J. Geophys. Res. 92, E447–E461.ADSCrossRefGoogle Scholar
  34. Koster van Groos, A.F. (1988), Weathering, the carbon cycle, and the differentiation of the continental crust and mantle, J. Geophys. Res. 93, 8952–58.ADSCrossRefGoogle Scholar
  35. Lake, J.A. (1988), Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences, Nature 331, 184–186.ADSCrossRefGoogle Scholar
  36. Lebofsky, L.A., Tholen, D.J., Rieke, G.H., and Lebofsky, M.J. (1984), 2060 Chiron: Visual and thermal infrared observations, Icarus 60, 532–537.ADSCrossRefGoogle Scholar
  37. Lindstrom, M.M. and Lindstrom, D.J. (1986), J. Geophys. Res. 91, D263–D276.ADSCrossRefGoogle Scholar
  38. Maher, K.A. and Stevenson, D.J. (1988), Impact Frustration of the origin of life, Nature 331, 612–614.ADSCrossRefGoogle Scholar
  39. Marvin, U.B., Carey, J.W., and Lindstrom, M.M. (1989), Science 243, 925–931.ADSCrossRefGoogle Scholar
  40. McKinnon, W.B., Chapman, C.R., and Housen, K.R. (1991), Cratering of the Uranian satellites. In J.T. Bergstrahl, E.D. Miner, and M.S. Matthews (eds.), Uranus ( University of Arizona Press, Tucson ), pp. 1177–1252.Google Scholar
  41. Melosh, H.J. (1989), Impact Cratering: A Geological Process, Oxford University Press, New York.Google Scholar
  42. Melosh, H.J. (1990), Giant impacts and the thermal state of the Earth. In Newsom, H.E. and Jones, J.H., eds., Origin of the Earth, Oxford University Press, pp. 69–84.Google Scholar
  43. Melosh, H.J., and Vickery, A.M. (1989), Impact erosion of the primitive atmosphere of Mars, Nature 338, 487–490.ADSCrossRefGoogle Scholar
  44. Melosh, H.J., Schneider, N., Zahnle, K., and Latham, D. (1990), Ignition of global wildfires at the Cretaceous/Tertiary boundary, Nature 343, 251–254.ADSCrossRefGoogle Scholar
  45. Mysen, B.O. and Kushiro, I. (1988), Condensation, evaporation, melting, and crystallization in the primitive solar nebula, Am. Min. 73, 1–19.ADSGoogle Scholar
  46. Nakajima, S., Hayashi, Y.-Y., and Abe, Y. (1992), A study of the “runaway greenhouse effect” with a one-dimensional radiative-convective equilibrium model, J. Atm. Sci. 49, 2256–2266.ADSCrossRefGoogle Scholar
  47. Newsom, H.E. and Jones, J.H. (1990), Origin of the Earth,Oxford University Press.Google Scholar
  48. Newsom, H.E. and Taylor, S.R. (1989), Geochemical implications of the formation of the Moon by a single giant impact Nature 338, 29–34.ADSCrossRefGoogle Scholar
  49. Oberbeck, V. and Fogleman, G. (1989). Impacts and the origin of life, Nature 339, 434.ADSCrossRefGoogle Scholar
  50. Oberbeck, V. and Fogleman, G (1990). Estimates of the maximum time required for the origin of life, Orig. of Life 340.Google Scholar
  51. Oikawa S. and Everhart, E., Past and future orbit of 1977 UB, object Chiron (1979), Astron. J. 84, 134–139.ADSCrossRefGoogle Scholar
  52. Olsson-Steel, D. (1987) Collisions in the solar system. IV. Cometary impacts upon the planets Mon. Not. Roy. Astron. Soc. 227, 501–524.ADSGoogle Scholar
  53. Pace, N., Olsen, G.J., and Woese, C.R. (1986), Ribosomal RNA phylogeny and the primary lines of evolutionary descent Cell 45, 325–326.CrossRefGoogle Scholar
  54. Pieters, C.M. (1986), Composition of the lunar highland crust from near-infrared spectroscopy. Rev. Geophys. 24, 557–578.ADSCrossRefGoogle Scholar
  55. Ringwood, A.E. and Seifert, S. (1986) in Hartmann, W.K., Phillips R.J. and Taylor, G.J., eds., Origin of the Moon, Lunar and Planetary Institute, Houston, 331–358.Google Scholar
  56. Rivera, M.C. and Lake, J.A. (1992), Evidence that eukaryotes and eocyte prokaryotes are immediate relatives, Science 257, 74–76.ADSCrossRefGoogle Scholar
  57. Safronov, V.S. (1972), Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets. NASA TT F-677.Google Scholar
  58. Safronov, V.S., G.V. Pechernikova, E.I. Ruskol, and A.V. Vitjazev (1986), Protosatellite swarms. In Burns, J. and Matthews, M.S., eds. Satellites, The University of Arizona Press, Tucson, pp. 89–116.Google Scholar
  59. Schmidt, R.M., and Holsapple, K.A. (1982), Estimates of crater size for large body impact. In Silver, L.T., and Schultz, P.H., eds., Geological Implications of Impacts of Large Asteroids and Comets on the Earth, Geological Society of America Special Paper 190, 93–102.Google Scholar
  60. Schmidt, R.M., and Housen, K.R. (1987), Some recent advances in the scaling of impact and explosion cratering, Int. J. Impact Mech. 5, 543–560.ADSCrossRefGoogle Scholar
  61. Scholl, H. (1979), History and evolution of Chiron’s orbit, Icarus 40, 345–349.ADSCrossRefGoogle Scholar
  62. Sharpton, V., and Ward, R, eds. (1990), Global Catastrophes in Earth History,Geological Society of America Special Paper 247.Google Scholar
  63. Shoemaker, E.M., R.F. Wolfe, and C.S. Shoemaker (1982), Cratering timescales for the Galilean satellites. In Morrison, D., ed., Satellites ofJupiter, The University of Arizona Press, Tucson, pp. 277–339.Google Scholar
  64. Shoemaker, E.M., Wolfe, R.F., and Shoemaker, C.S. (1990), Asteroid and comet flux in the neighborhood of Earth. In V.L. Sharpton and P.D. Ward, eds., Global Catastrophes in Earth History. Geol. Soc. of Am. Special Paper 247, pp. 155–180.Google Scholar
  65. Silver, L.T., and Schultz, P.H., eds. (1982), Geological Implications of Impacts of Large Asteroids and Comets on the Earth. Geological Society of America Special Paper 190.Google Scholar
  66. Sleep, N.S., Zahnle. K., Kasting, J.F., and Morowitz, H. (1989), Annihilation of ecosystems by large asteroid impacts on the early Earth, Nature 342, 139–142.ADSCrossRefGoogle Scholar
  67. Spudis, P.D. (1993), The Geology of Multi-Ring Impact Basins, Cambridge University Press.Google Scholar
  68. Spudis, P.D., Hawke, B.R., and Lucey, P.G. (1988), Proc. Lunar Planet. Sci. Conf. 18, 155–168.ADSGoogle Scholar
  69. Stevenson, D.J. (1987), Origin of the Moon-the Collision Hypothesis, Ann. Rev. Earth Planet. Sci. 15, 271–315.ADSCrossRefGoogle Scholar
  70. Suits, G.W. (1979), Natural Sources, in Wolfe, W. and Zissis, G., The Infrared Handbook, Office of Naval Research, Washington, DC, 3–1–3–154.Google Scholar
  71. Swindle, T.D., Caffee, M.W., Hohenberg, C.M., and Taylor, S.R. (1986), I-Pu-Xe dating and the relative ages of the Earth and Moon. In W.K. Hartmann, R.J. Phillips, and G.J. Taylor (eds.), Origin of the Moon, ( Lunar and Planetary Institute, Houston ), pp. 331–358Google Scholar
  72. Swisher, C., Grajales-Nishimura, J., Montanans, A., Margolis, S., Claeys, R, Alvarez, W., Renne, P., Cedillo-Pardo, E., Maurrasse, F., Curtis, G., Smit, J., and McWilliams, M. (1992), Coeval 40Ar/39Ar ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites, Science 257, 954–958.ADSCrossRefGoogle Scholar
  73. Taylor, S.R. (1986), Planetary Science: A Lunar Perspective, Lunar and Planetary Institute, Houston.Google Scholar
  74. Tera, F., Papanastassiou, D.A., and Wasserburg, G.J. (1974), Isotopic evidence for a terminal lunar cataclysm, Earth Planet. Sci. Lett. 22, 1–21.ADSCrossRefGoogle Scholar
  75. Tremaine, S. and Dones, L. (1993), On the statistical distribution of massive impactors, Icarus 106, 335–341.ADSCrossRefGoogle Scholar
  76. Turcotte, D.L. (1992), Fractals and Chaos in Geology and Geophysics,Oxford University Press.Google Scholar
  77. Turcotte, D.L., and Schubert G. (1982), Geodynamics,Wiley.Google Scholar
  78. Warren, P.H., Jerde, E.A., and Kallemeyn, G.W. (1989), Earth Planet. Sci. Lett. 91, 245–260.ADSCrossRefGoogle Scholar
  79. Wetherill, G.W. (1975), Late heavy bombardment of the moon and terrestrial planets, Proc. Lunar Sci. Conf. 6, 1539–1561.ADSGoogle Scholar
  80. Wetherill, G.W. (1981), Nature and origin of basin-forming projectiles. In Schultz, P. and Merrill, R.B., Multi-ring Basins, Proc. Lun. Planet. Sci. 12A, Pergamon Press, New York, 1–18.Google Scholar
  81. Wilhelms, D.E. (1987), The Geologic History of the Moon, U.S.G.S. Professional Paper 1348.Google Scholar
  82. Vickery, A.M., and Melosh, H.J. (1990), Atmospheric erosion and impactor retention in large impacts, with application to mass extinctions. In Sharpton, V.L., and Ward, P.D., eds., Global Catastrophes in Earth History, Geological Society of America Special Paper 247, 289–300.Google Scholar
  83. Zahnle, K. (1990), Atmospheric chemistry by large impacts. In Sharpton, V.L., and Ward, P.D., eds., Global Catastrophes in Earth History, Geological Society of America Special Paper 247, 271–288.Google Scholar
  84. Zel’dovich, I.B., and Raizer, Y.P. (1967), Physics of Shock Waves and High Temperature Hydrodynamic Phenomena,Academic.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • K. J. Zahnle
  • N. H. Sleep

There are no affiliations available

Personalised recommendations