Analysis of Food Emulsifiers

  • Gerard L. Hasenhuettl

Abstract

Analytical methods for food emulsifiers are closely associated with or derived from methods commonly used for fats and oils (Sonntag, 1982; Karleskind, 1996). Test methods are of several types and are carried out for a variety of reasons. Analysis ensures that the composition of the emulsifier is correct and that it has not seriously degraded during processing. Often the composition and distribution of homologs has implications for the utility of the emulsifier in the individual food product (see, for example, Halkier, 1980). The final level of testing is often a measurement of performance in the food system itself. Specifications are negotiated and agreed upon between the producer and the customer (usually a processed food manufacturer). Analytical tests are carried out on the process line or control laboratory of the supplier, who then provides a certificate of analysis to the customer. The customer may then check the analysis as part of the receiving procedure and accept or reject the shipment. Disputes may be settled by submitting a sample to an independent laboratory.

Keywords

Sucrose Ester Food Emulsifier Sodium Thiosulfate Solution Alcoholic Potassium Hydroxide Sodium Stearoyl Lactylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amano, H., (1979). Tekisuto-Zeminaru, 26th Conference, Tokyo: Nippon Yukagaku Kyokai, 59–74.Google Scholar
  2. Biacs, O., et al. (1978). Acta Aliment. Acad. Sci. Hung., 7 (3): 181–93.Google Scholar
  3. Birkel, T., et al. (1979). J. Assoc. Off. Anal. Chem., 62 (4): 931–6.Google Scholar
  4. Blum, J., Koehler, W. (1970). Lipids, 5 (7): 601–6.Google Scholar
  5. Bruemmer, J.M. (1971). Brot Gebaeck, 25 (11): 217–20.Google Scholar
  6. Brueschweiler, H. (1977). Mitt. Geb. Lebensmittelunters. Hyg., 68 (1): 46–63.Google Scholar
  7. Brueschweiler, H., Dieffenbacher, A. (1991). Pure Appl. Chem., 63 (8): 1153–62.Google Scholar
  8. Brueschweiler, H., Hautefenne, A. (1990). Pure Appl. Chem., 62 (4): 781–93.Google Scholar
  9. Bruns, A. (1988). Fett Wiss. Technol., 90 (8): 289–91.Google Scholar
  10. Christie, W.W. (1996). “Separation of phospholipid classes by high performance liquid chromatography,” in Advances in Lipid Methodology-Three (ed. W.W. Christie), The Oily Press, Ayr, Scotland, pp. 77–108.Google Scholar
  11. Christie, W.W. (1992). “Detectors for high performance liquid chromatography of lipids with special reference to evaporative light scattering detection,” in Advances in Lipid Methodology-One (ed. W.W. Christie ), The Oily Press, Ayr, Scotland, pp. 239–271.Google Scholar
  12. Christie, W.W. (1989). Gas Chromatography and Lipids: A Practical Guide, The Oily Press, Ayr, Scotland.Google Scholar
  13. Cunniff, P. (ed.) ( 1995. ) Official Methods of Analysis of AOAC International, 16th ed., AOAC International, Arlington, VA.Google Scholar
  14. Cunniff, P. (1995a). 41.1.63 Method 969.34.Google Scholar
  15. Cunniff, P. (1995b). 41.1.60 Method 942.19.Google Scholar
  16. Cunniff, P. (1995c). 41.1.20 Method 940.28.Google Scholar
  17. Cunniff, P. (1995d). 41.1.18 Method 920.160.Google Scholar
  18. Cunniff, P. (1995e). 41.1.15 Method 993.20.Google Scholar
  19. Cunniff, P. (1995f). 41.1.12 Method 965.32.Google Scholar
  20. Cunniff, P. (1995g). 41.1.16 Method 965.33.Google Scholar
  21. Daniels, D.H., et al. (1985). J. Agric. Food Chem., 33 (3): 368–72.Google Scholar
  22. Daniels, D.H. (1982). J. Assoc. Off Anal. Chem., 65 (1): 162–5.Google Scholar
  23. Dawe, R.G., Wright, J.L.C. (1988). Lipids, 23 (4): 355–8.Google Scholar
  24. Dick, R., Miserez, A. (1976). Mit. Geb. Lebensmittelunters Hyg., 67 (4): 472–87Google Scholar
  25. Dieffenbacher, A., et al. (1988). Rev. Fr. Corps. Gras, 35 (12): 495–9Google Scholar
  26. Dieffenbacher, A. (1989). Rev. Fr. Corps. Gras, 36 (2): 64.Google Scholar
  27. Duden, R., Fricker, A. (1977). Fette Seifen Anstrichm., 79 (12): 489–91.Google Scholar
  28. El-Sebaiy, L.A., et al. (1980). Food Chem., 5 (3): 217–28.Google Scholar
  29. Erdahl, W.F., et al. (1973). J. Amer. Oil Chemists Soc., 50 (12): 513–15.Google Scholar
  30. Filip, V., Kleinova, M. (1993). Z. Lebensm.-Unteres. Forsch., 196 (6): 532–5.Google Scholar
  31. Firestone, D. (1994). J. Assoc. Off Anal. Chem., 77 (3): 677–80.Google Scholar
  32. Firestone, D. (ed.) (1990). Official Methods and Recommended Practices of the American Oil Chemists’ Society, 4th ed., American Oil Chemists’ Society, Champaign, IL.Google Scholar
  33. Firestone, D. (1990a). Method Cc 1–25.Google Scholar
  34. Firestone, D. (1990b). Method Cc 13bGoogle Scholar
  35. Firestone, D. (1990c). Method Cc 13d-55Google Scholar
  36. Firestone, D. (1990d). Method Cc 14–59Google Scholar
  37. Firestone, D. (1990e). Method Cc 14–59Google Scholar
  38. Firestone, D. (1990f). Methods Cd 1–25, Cd lb-97.Google Scholar
  39. Firestone, D. (1990g). Method Cd lb-91Google Scholar
  40. Firestone, D. (1990h). Method Cd lc-85Google Scholar
  41. Firestone, D. (1990i). Methods Cd 2a-45, Ja 2a - 46.Google Scholar
  42. Firestone, D. (1990j). Methods Cd 3–25, Cd 3b-76, Cd 3c91.Google Scholar
  43. Firestone, D. (1990k). Methods Cd 3a-63, Cd 2d-63, Ja 6–55.Google Scholar
  44. Firestone, D. (19901). Method Cd 4 40Google Scholar
  45. Firestone, D. (1990m). Method Cd 5–40Google Scholar
  46. Firestone, D. (1990n). Method Cd 11–57Google Scholar
  47. Firestone, D. (1990o). Method Ce lb-89Google Scholar
  48. Firestone, D. (1990p). Method Ja 2b-87Google Scholar
  49. Firestone, D. (1990q). Method Ja 4–46Google Scholar
  50. Firestone, D. (1990r). Method Ja 5–55Google Scholar
  51. Firestone, D. (1990s). Method Ja 8–87Google Scholar
  52. Firestone, D. (1990t). Method Ja 9–87Google Scholar
  53. Firestone, D. (1990u). Method Ja 10–87Google Scholar
  54. Firestone, D. (1990v). Method Ja 11–87.Google Scholar
  55. Flor, R.V., (1980). Prager, M.J., J. Assoc. Off. Anal. Chem., 63 (1): 22–6.Google Scholar
  56. Franzke, C., Kroll, J. (1980). Nahrung, 24 (1): 89–90.Google Scholar
  57. Franzke, C., Kroll, J. (1977). Z. Lebensm.-Unters. Forsch., 163 (3): 206–7.Google Scholar
  58. Fregapane, G., et al. (1992). Prog. Biotechnol., 8: 563–8.Google Scholar
  59. Fujita, M., Yamanaka, K. (1991). Yakagaku, 40 (1): 20–3.Google Scholar
  60. Garti, N., Ascerin, A. (1983). J. Am. Oil Chem. Soc., 60 (6): 1151–4.Google Scholar
  61. Garti, N., Ascerin, A. (1981). J. Liq. Chromatogr., 4 (7): 117–394.Google Scholar
  62. Gernert, G., (1968). Z. Lebensm.-Unters. Forsch., 138 (4): 216–220.Google Scholar
  63. Glonek, T., Merchant, R.E. (1996). “3113 nuclear magnetic resonance profiling of phospholipids,” in Advances In Lipid Methodology -Three (ed. W.W. Christie ), The Oily Press, Ayr, Scotland.Google Scholar
  64. Goldstein, S. (1984). U.S. Patent 4, 473–651Google Scholar
  65. Gunstone, G. (1993). High Resolution 13C NMR spectroscopy of lipids,“ in Advances In Lipid Methodology -Two (ed. W.W. Christie), The Oily Press, Ayr, Scotland.Google Scholar
  66. Halkier, S.B., (1980). Ger. Int. Ges. Getreidechem., 10, 36–7.Google Scholar
  67. Halverson, H., Qvist, O., (1974). J. Amer. Oil Chem. Soc., 51 (4): 162–5.Google Scholar
  68. Hartman, L., et al. (1980). Analyst, 105 (1247): 173–6.Google Scholar
  69. Hasenhuettl, G., et al. (1990). J. Am. Oil Chem. Soc., 67 (11): 797–9.Google Scholar
  70. Holopainen, M. (1972). Suom. Maataloustiet. Seuran. Julk., 125–173.Google Scholar
  71. Hsieh, J.Y., et al. (1981). J. Chromatogr., 208 (2): 398–403.Google Scholar
  72. Hurst, W.J., Martin, R.A. (1984). J. Am. Oil Chem. Soc., 61 (9): 1462–3.Google Scholar
  73. Hurst, W.J., Martin, R.A. (1980). J. Am. Oil Chem. Soc., 57 (9): 307–10.Google Scholar
  74. Huyghebaert, G., Baert, L. (1992). Chromatographia, 34 (11–12): 557–62Google Scholar
  75. Ingvardsen, L., Michaelsen, S. (1994). J. Am. Oil Chem. Soc., 71 (2): 183–8.Google Scholar
  76. Ishiwata, H., et al. (1973). Shokuhin Eisaigaku Zasshi., 14 (5): 425–30.Google Scholar
  77. Jakubska, E., et al. (1977). Axta Aliment. Pol., 3 (1): 79–84.Google Scholar
  78. Jodlbauer, H.D. (1981). Veroeff. Arbeitsgem. Getreideforsch, 183: 42–9.Google Scholar
  79. Jodlbauer, H.D. (1976). Getreide Mehl Brot, 30 (7): 181–7.Google Scholar
  80. Kaitaranta, J.K., Bessman, S.P. (1981). Ana. Vhem., 53 (8): 1232–5.Google Scholar
  81. Kanematsu, H., et al. (1972). Eiyo To Shokuryo, 25 (1): 46–50Google Scholar
  82. Karleskind, A. (ed.) (1996). “Analysis of Oils & Fats,” in Oils and Fats Manual: A Comprehensive Treatise, Vol. 2, Chap. XIV, Lavoisier Publishing, Paris.Google Scholar
  83. Kimura, S., et al. (1969). Nippon Shokuhin Kogyo Gakkai-Shi, 16 (9): 425–9.Google Scholar
  84. Kroeller, E. (1969). Fette Seifen Anstrichm., 71 (10): 896–8.Google Scholar
  85. Kroeller, E. (1968). Fette Seiften Anstrichm., 70 (6): 431–33.Google Scholar
  86. Kroeller, E. (1966). Fette Seifen Anstrichm., 68 (12): 1066–68.Google Scholar
  87. Lee, T., et al. (1993). J. Am. Oil Chem. Soc., 70 (4): 343–7.Google Scholar
  88. Lee, T. (1988). J. Assoc. Off. Anal. Chem., 71 (4): 785–8.Google Scholar
  89. Lendrath, G., et al. (1991). Fett Wiss. Technol., 93 (2): 53–61.Google Scholar
  90. Lendrath, G. (1990). J. Chromatogr., 502 (2): 385–92.Google Scholar
  91. Le Quere, J.L. (1993). “Tandem mass spectrometry in the structural analysis of lipids,” in Advances in Lipid Methodology-Two (ed. W.W. Christie ), The Oily Press, Ayr, Scotland.Google Scholar
  92. Lew, H. (1975). Veroeff Landwirtsch.-Chem. Bund esversuchsanst. Linz, 10: 97–102Google Scholar
  93. Lindblom, G. 1996. “Nuclear magnetic spectroscopy and lipid phase behavior and lipid diffusion,” in Advances In Lipid Methodology-Three (ed. W.W. Christie ), The Oily Press, Ayr, Scotland.Google Scholar
  94. Lundquist, G., Meloan, C. (1971). Anal. Chem., 43 (8): 1122–3.Google Scholar
  95. Martin, E., et. al. (1989). Mitt. Geb. Lebensmittelunters. Hyg., 79 (4): 406–12.Google Scholar
  96. Melton, S.L. (1992). J. Am. Oil Chem. Soc., 69 (8): 784–8.Google Scholar
  97. Moelering, H., Bergmeyer, H.U. (1974). Methoden Enzym. Anal. 3. Neubearbeitete Erweiterte Aufl. (ed. H.U. Bergmeyer), Academic, New York, Vol. 2, 1860–4Google Scholar
  98. Mueller, H. (1977). Fette Seifen Anstrichm., 79 (6): 259–61.Google Scholar
  99. Murakami, C., et al. (1989). Shokuhin Eiseigaku Zasshi, 30 (4): 306–13.Google Scholar
  100. Murohy, J., Grisley, L. (1969). J. Am. Oil Chem. Soc., 46 (7): 384.Google Scholar
  101. Murphy, J.M., Hibbert, H.R. (1969). J. Food Technol., 4 (3): 227–34.Google Scholar
  102. Murphy, J.M., Hibbert, H.R., Scott, C.C., (1969). Analyst, 94 (1119): 481–3.Google Scholar
  103. Nakanishi, H., Tsuda, T. (1983). Shokuhin Eiseigaku Zasshi, 24 (5): 474–9Google Scholar
  104. Olsson, U., et al. (1990). J. Planar Chromatogr.-Mod. TLC, 3: 55–60.Google Scholar
  105. Paganuzzi, V. (1987). Riv. Ital. Sostanze Grasse, 61 (10): 411–14Google Scholar
  106. Paquot, C., Hauffen, A. (eds.) (1987). IUPAC Standard Methods of Analysis of Oils, Fats, and Derivatives, 7th ed., Blackwell, London.Google Scholar
  107. Press, K., et al. (1981). J. Agric. Food Chem., 29 (5): 1096–8.Google Scholar
  108. Ranny, M., et al. (1983). Seifen Oele FetteWachse, 109 (8): 219–24.Google Scholar
  109. Regula, E. (1975). J. Chromatogr., 115 (2): 639–44.Google Scholar
  110. Renger, B., Wenz, K. (1989). J. Planar Chromatogr.-Mod. TLC, 2 (1): 24–7.Google Scholar
  111. Rhee, J.S., Shin, M.G. (1982). J. Am. Oil Chem. Soc., 59 (2): 98–9.Google Scholar
  112. Rilsom, T., Hoffmyer, L. (1978). J. Am. Oil Chem. Soc., 55 (9): 649–52.Google Scholar
  113. Rios, J., et al. (1994). J. Am. Oil Chem. Soc., 71 (4): 385–90.Google Scholar
  114. Sacchi, P., et al. (1990). Riv. Ital. Sostanze Grasse, 67 (5): 245–52.Google Scholar
  115. Sahastrabudhe, M. (1967). J. Am. Oil Chem. Soc., 44 (7): 376–8.Google Scholar
  116. Saito, K., et al. (1987). Shokuhin Eisaigaku Zasshi, 28 (5): 372–7.Google Scholar
  117. Schmid, M.J., Otteneder, H. (1976). Getreide Mehl Brot, 30 (3): 6214.Google Scholar
  118. Schuetze, T. (1977). Nahrung, 21 (5): 405–15.Google Scholar
  119. Schuyl, P.J.W., van Platerink, C.J. (1994). “Analysis of sucrose polyesters with electrospray mass spectrometry,” presented at the 42nd ASMS Conference on Mass Spectrometry, Chicago, IL, May 29-June 3.Google Scholar
  120. Senelt, S., et al. (1986). Turk. fly. Deneysel. Biyol. Derg., 43 (1): 23–35.Google Scholar
  121. Sheeley, D.M., et al. (1986). Spectroscopy, 1 (2): 38–9.Google Scholar
  122. Shmidt, A.A. (1979). Lebensmittelindustrie, 26 (4): 172–3.Google Scholar
  123. Slack, P.T. (ed.) (1987). Analytical Methods Manual, British Food Manufacturing Industries Research Association, Leatherhead, England.Google Scholar
  124. Sonntag, N.O.V. (1982). “Analytical Methods,” in Bailey’s Industrial Oil And Fat Products (ed. D. Swern), 4th ed., Vol. 2, Wiley, New York.Google Scholar
  125. Sotirhos, N., et al. (1986). Dev. Food Sci., 12: 601–8.Google Scholar
  126. Tajano, S., Kondoh, Y. (1987). J. Am. Oil Chem. Soc., 64 (7): 1001–3.Google Scholar
  127. Takagi, T., Ando, Y. (1994). J. Am. Oil Chem. Soc., 71 (4): 459–60.Google Scholar
  128. Itabashi, Y., (1986). Yukagaku, 35(9):747–50. CA 105: 207689.Google Scholar
  129. Tanaka, M., et al. (1979). Yukagaku, 28(2):96–9. CA 90: 166623.Google Scholar
  130. Taylor, S.L. (Committee Chair), (1996). Food Chemicals Codex, National Academy Press, Washington, D.C.Google Scholar
  131. Ibid. (1996a). Pages 214, 216.Google Scholar
  132. Tonogau, Y., et al. (1987). Shokuhin Eisaigaku Zasshi, 28 (6): 427–35.Google Scholar
  133. Traitler, H., Nikiforov, A. (1984). Anal. Chem. Symp. Ser., 21: 299–304.Google Scholar
  134. Tsuda, T., et al. (1984). J. Assoc. Off. Anal. Chem., 67 (6): 1149–51.Google Scholar
  135. Tsuda, T., Nakanishi, H. (1990). J. Assoc. Off Anal. Chem., 66 (4): 1050–2.Google Scholar
  136. Tsuda, T., et al. (1984). J. Assoc. Off. Anal. Chem., 67 (6): 1149–51.Google Scholar
  137. Tumanaka, K., Fujita, N. (1990). Yukagaku, 19 (6): 393–7.Google Scholar
  138. Ugrinovits, M. (1983). Alimenta, 22 (10): 7–9.Google Scholar
  139. Vyncke, W., Lagrou, E (1973). Meded. Fac. Landbouwwetensch., 38 (3): 235–52.Google Scholar
  140. Watanabe, M., et al. (1986). Yakagaku, 35 (12): 1018–24.Google Scholar
  141. Wewala, A.R., Baldwin, A.J. (1982). N. Z. J. Dairy Sci. Technol., 17 (3): 251–6.Google Scholar
  142. Wurziger, J. (1968). Ber. Getreidechem. Tag, Detmold, 45–57.Google Scholar
  143. Yamanaka, S., Kudo, K. (1991). Japanese Patent 03107765 A2, May 8. CA 115: 126–048.Google Scholar
  144. Yang, G.C. (1992). Trends Food Sci. & Technol., 3: 15–18.Google Scholar
  145. Yang, G.C., et al. (1991). J. Agric. Food Chem., 39: 896–8.Google Scholar
  146. Yukawa, M., Hanada, J. (1982). Yukagaku, 31 (11): 958–9.Google Scholar
  147. Yusupoca, I., et. al. (1976). Khim. Prom-St, CA 88: 35–919.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Gerard L. Hasenhuettl

There are no affiliations available

Personalised recommendations