Fully Integrated Low Phase-Noise VCOs: from Post-Processing to Standard CMOS

  • Michiel Steyaert
  • Jan Craninckx

Abstract

An overview is given on the several options for and problems associated with creating high-quality integrated inductors for VCOs. Special processing techniques are reported that can enhance the performance of a normal planar inductor coil. Bonding wire inductors are presented as an alternative, that allows state-of-the-art phase noise performance at no extra cost. Finally, it is shown that by thorough analysis of standard planar inductors with finite-element simulations, performances can be achieved that are even better than structures requiring extra processing cost. This is done despite a low-ohmic substrate with only two metal layers.

Keywords

Phase Noise Series Resistance Eddy Current Skin Effect Bonding Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Stetzler, I. Post, J. Havens, and M. Koyama, “A 2.7–4.5 V single-chip GSM transceiver RF integrated circuit,” IEEE Journal of Solid-State Circuits, vol. 30, pp. 1421–1429, December 1995.CrossRefGoogle Scholar
  2. [2]
    S. Heinen, S. Beyer, and J. Fenk, “A 3.0-V 2-GHz transmitter IC for digital radio communication with integrated VCOs,” in ISSCC Dig. of Tech. Papers, (San Fransisco), pp. 146–147, February 1995.Google Scholar
  3. [3]
    C. Marshal, F. Behbahani, W. Birth, A. Fotowat, T. Fuchs, R. Gaethke, E. Heimerl, S. Lee, P. Moore, S. Navid, and E. Saur, “A 2.7-V GSM transceiver IC with on-chip filtering,” in ISSCC Dig. of Tech. Papers, (San Fransisco), pp. 148–149, February 1995.Google Scholar
  4. [4]
    H. Sato, K. Kashiwagi, K. Niwano, T. Iga, T. Ikeda, and K. Mashiko, “A 1.9-GHz single-chip IF transceiver for digital cordless phones,” in ISSCC Dig. of Tech. Papers, (San Fransisco), pp. 342–343, February 1996.Google Scholar
  5. [5]
    B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 331–343, March 1996.CrossRefGoogle Scholar
  6. [6]
    W. F. Egan, Frequency Synthesis by Phase Lock. J. Wiley & Sons, 1981.Google Scholar
  7. [7]
    D. Shaeffer and T. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” in Tech. Dig. 1996 Symposium on VLSI Circuits, (Honolulu), pp. 32–33, June 1996.CrossRefGoogle Scholar
  8. [8]
    J. Crols and M. Steyaert, “A single-chip 900-MHz CMOS receiver front-end with a high performance low-IF topology,” IEEE Journal of Solid-State Circuits, vol. 30, pp. 1483–1492, December 1995.CrossRefGoogle Scholar
  9. [9]
    P. Kinget and M. Steyaert, “A 1-GHz CMOS upconversion mixer,” in Proc of the 1996 IEEE Custom Integrated Circuits Conference, (San Diego), pp. 197–200, May 1996.Google Scholar
  10. [10]
    J. Craninckx and M. Steyaert, “A 1.8-GHz low-phase-noise voltage controlled oscillator with prescaler,” IEEE Journal of Solid-State Circuits, vol. 30, pp. 1474–1482, December 1995.CrossRefGoogle Scholar
  11. [11]
    R. Rogenmoser, Q. Huang, and F. Piazza, “1.57-GHz asynchronous and 1.4-GHz dual modulus 1.2-μm CMOS prescalers,” in Proc. of the IEEE 1994 Custom Integrated Circuits Conference, pp. 16.3.1–4, May 1994.Google Scholar
  12. [12]
    J. Craninckx and M. Steyaert, “A 1.75-GHz / 3-V dual modulus divide-by-128/129 prescaler in 0.7-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 890–897, July 1996.CrossRefGoogle Scholar
  13. [13]
    A. Grebene, Bipolar and MOS Analog Integrated Circuit Design. J. Wiley & Sons, 1984.Google Scholar
  14. [14]
    J. Craninckx and M. Steyaert, “Low-noise voltage controlled oscillators using enhanced LC-tanks,” IEEE Trans. on Circuits and Systems — II : Analog and Digital Signal Processing, vol. 42, pp. 794–804, December 1995.CrossRefGoogle Scholar
  15. [15]
    J. G. Sneep and C. J. M. Verhoeven, “A new low-noise 100-MHz balanced relaxation oscillator,” IEEE Journal of Solid-State Circuits, vol. 25, pp. 692–698, June 1990.CrossRefGoogle Scholar
  16. [16]
    T. C. Weigandt, B. Kim, and P. R. Gray, “Analysis of timing jitter in CMOS ring oscillators,” in Proc. of the IEEE 1994 International Symposium on Circuits and Systems, (London), pp. 27–30, May 1994.Google Scholar
  17. [17]
    H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Trans. on Parts, Hybrids and Packaging, vol. PHP-10, pp. 1001–109, June 1974.Google Scholar
  18. [18]
    N. M. Nguyen and R. G. Meyer, “Si IC-compatible inductors and LC passive filters,” IEEE Journal of Solid-State Circuits, vol. 25, pp. 1028–1031, August 1990.CrossRefGoogle Scholar
  19. [19]
    N. M. Nguyen and R. G. Meyer, “A 1.8-GHz monolithic LC voltage-controlled oscillator,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 444–450, March 1992.CrossRefGoogle Scholar
  20. [20]
    P. Basedau and Q. Huang, “A 1-GHz, 1.5-V monolithic LC oscillator in 1-μm CMOS,” in Proc. of the 1994 European Solid-State Circuits Conference, (Ulm), pp. 172–175, September 1994.Google Scholar
  21. [21]
    M. Soyuer, K. A. Jenkins, J. N. Burghartz, H. A. Ainspan, F. J. Canora, S. Ponnapalli, J. F. Ewen, and W. E. Pence, “A 2.4-GHz silicon bipolar oscillator with integrated resonator,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 268p–270, February 1996.CrossRefGoogle Scholar
  22. [22]
    M. Soyuer, K. A. Jenkins, J. N. Burghartz, and M. D. Hulvey, “A 3-V 4-GHz nMOS voltage-controlled oscillator with integrated resonator,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 2042–2045, December 1996.CrossRefGoogle Scholar
  23. [23]
    J. Y.-C. Chang, A. A. Abidi, and M. Gaitan, “Large suspended inductors on silicon and their use in a 2-μm CMOS RF amplifier,” IEEE Electron Device Letters, vol. 14, pp. 246–248, May 1993.CrossRefGoogle Scholar
  24. [24]
    A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900-MHz CMOS LC-oscillator with quadrature outputs,” in ISSCC Dig. of Tech. Papers, (San Fransisco), pp. 392–393, February 1996.Google Scholar
  25. [25]
    C. Olgaard and A. Rofougaran, “A low power 900-MHz tuned CMOS amplifier with large output swing capability,” in Proc. of the eleventh Norchip seminar, (Trondheim), pp. 162–169, November 1993.Google Scholar
  26. [26]
    E. M. Freeman, “Mag Net 5 user guide — using the Mag Net version 5 package from Infolytica,” Infolytica, 1993.Google Scholar
  27. [27]
    Alcatel-Mietec, Electrical Parameters CMOS 0.7 μm. Google Scholar
  28. [28]
    J. Craninckx and M. Steyaert, “A 1.8-GHz low-phase noise spiralLC CMOS VCO,” in 1996 Symposium on VLSI Circuits, (Honolulu), pp. 30–31, June 1996.CrossRefGoogle Scholar
  29. [29]
    L. Dauphinee, M. Copeland, and P. Schvan, “A balanced 1.5-GHz voltage-controlled oscillator with an integrated LC-resonator,” in ISSCC Dig. of Tech. Papers, (San Fransisco), p. 23. 7, February 1997.Google Scholar
  30. [30]
    J. Craninckx and M. Steyaert, “A fully integrated spiral-LC CMOS VCO set with prescaler for GSM and DCS-1800 systems,” in Proc. of the IEEE 1997 Custom Integrated Circuits Conference, (Santa Clara, USA), pp. 403–406, May 1997.Google Scholar
  31. [31]
    A. Ali and L. Tham, “A 900-MHz frequency synthesizer with integrated LC voltage-controlled oscillator,” in ISSCC Dig. of Tech. Papers, (San Fransisco), pp. 390–391, February 1996.Google Scholar
  32. [32]
    B. Razavi, “A 1.8-ghz CMOS voltage-controlled oscillator,” in ISSCC Dig. of Tech. Papers, (San Fransisco), p. 23.6, February 1997.Google Scholar
  33. [33]
    B. Jansen, K. Negus, and D. Lee, “Silicon bipolar VCO family for 1.1 to 2.2 GHz with fully integrated tank and tuning circuits,” in ISSCC Dig. of Tech. Papers, (San Fransisco), p. 23.8, February 1997.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Michiel Steyaert
    • 1
  • Jan Craninckx
    • 1
  1. 1.K.U. LeuvenESAT-MICASHeverleeBelgium

Personalised recommendations