GABAA Receptor Agonists, Partial Agonists, and Antagonists

  • Povl Krogsgaard-Larsen
  • Bente Frølund
  • Bjarke Ebert
Part of the The Receptors book series (REC)

Abstract

The neutral amino acid, γ-aminobutyric acid (GABA), is an inhibitory transmitter in the central nervous system (CNS). Furthermore, GABA is involved as a neurotransmitter and/or a paracrine effector in the regulation of a variety of physiological mechanisms in the periphery. Some of these latter functions may be under central GABA control; others are managed by local GABA neurons. A large percentage, perhaps the majority, of central neurons are under GABA control. The complex mechanisms underlying the GABA-mediated neurotransmission have been extensively studied, using a broad spectrum of electrophysiological, neurochemical, pharmacological, and in recent years, molecular biological techniques (Krnjevic, 1974; Curtis and Johnston, 1974; Olsen and Venter, 1986; Redburn and Schousboe, 1987; Bowery and Nistico, 1989; Bowery et al., 1990; Biggio and Costa, 1990; Schousboe et al., 1992a).

Keywords

Gaba Receptor Cerebellar Granule Cell Cerebellar Granule Neuron Neuroactive Steroid Gaba Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, R. D., Apostopoulos, C., and Richardson, J. A. (1990) 2-Amino-1,3,4-thiadiazole derivatives of GABA as GABAA antagonists. Aust. J. Chem. 43, 1767–1772.Google Scholar
  2. Arnt, J. and Krogsgaard-Larsen, P. (1979) GABA agonists and potential antagonists related to muscimol. Brain Res 177, 395–400.PubMedGoogle Scholar
  3. Barnard, E. A. (1992) Receptor classes and the transmitter-gated ion channels. Trends Biochem. Sci. 17, 368–374.PubMedGoogle Scholar
  4. Barnard, E. A. and Costa, E., eds. (1989) Allosteric Modulation ofAmino Acid Receptors: Therapeutic Implications, Raven, New York.Google Scholar
  5. Baulieu, E. E. (1991) Neurosteroids: a new function in the brain. Biol. Cell. 71, 3–10.PubMedGoogle Scholar
  6. Belhage, B., Damgaard, I., Saederup, E., Squires, R. F., and Schousboe, A. (1991) High-and low-affinity GABA-receptors in cultured cerebellar granule cells regulate transmitter release by different mechanisms. Neurochem. Int. 19, 475–482.Google Scholar
  7. Belhage, B., Hansen, G. H., Meier, E., and Schousboe, A. (1990) Effects of inhibitors of protein synthesis and intracellular transport on the GABAagonist induced functional differentiation of cultured cerebellar granule cells. J. Neurochem. 55, 1107–1113.PubMedGoogle Scholar
  8. Benes, F. M., Vincent, S. L., Alsterberg, G., Bird, E. D., and SanGiovanni, J. P. (1992) Increased GABAA receptor binding in superficial layers of cingulate cortex in schizophrenics. J. Neurosci. 12, 924–929.Google Scholar
  9. Biggio, G. and Costa, E., eds. (1990) GAGA and Benzodiazepine Receptor Subtypes, Raven, New York.Google Scholar
  10. Bixler, E. O., Kales, A., Brubaker, B. H., and Kales, J. D. (1987) Adverse reactions to benzodiazepine hypnotics: spontaneous reporting system. Pharmacology 35, 286–300.PubMedGoogle Scholar
  11. Bouchet, M.-J., Jacques, P., Ilien, B., Goeldner, M., and Hirth, C. (1992) m-Sulfonate benzene diazonium chloride: a powerful affinity label for the y-aminobutyric acid binding site from rat brain. J. Neurochem. 59, 1405–1413.Google Scholar
  12. Bowery, N. G. (1983) Classification of GABA receptors, in The GABA Receptors ( Enna, S. J., ed.), Humana, Clifton, NJ, pp. 177–213.Google Scholar
  13. Bowery, N. G., Bittiger, H., and Olpe, H.-R., eds. (1990) GABA B Receptors in Mammalian Function, John Wiley, Chichester.Google Scholar
  14. Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A., Middlemiss, D. N., Shaw, J., and Turnbull, M. (1980) (—) Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283, 92–94.Google Scholar
  15. Bowery, N. G. and Nistico, G., eds. (1989) GABA: Basic Research and Clinical Applications, Pythagora, Rome.Google Scholar
  16. Braestrup, C., Nielsen, M., Krogsgaard-Larsen, P., and Falch, E. (1979) Partial agonists for brain GABA/benzodiazepine receptor complex. Nature 280, 331–333.Google Scholar
  17. Brioni, J. D., Decker, M. W., Gamboa, L. P., Izquierdo, I., and McGaugh, J. L. (1990) Muscimol injections in the medial septum impair spatial learning. Brain Res. 522, 227–234.Google Scholar
  18. Brioni, J. D., Nagahara, A. H., and McGaugh, J. L. (1989) Involvement of the amygdala GABAergic system in the modulation of memory storage. Brain Res. 487, 105–112.PubMedGoogle Scholar
  19. Brodie, M. J. and McKee, P. J. W. (1990) Vigabatrin and psychosis. Lancet 335, 1279.Google Scholar
  20. Bruno, G., Foster, N. L., Fedio, P., Mohr, E., Cox, C., Gillespie, M. M., and Chase, T. N. (1984) THIP therapy of Alzheimer’s disease. Neurology 34 (Suppl.) 225.Google Scholar
  21. Bureau, M. and Olsen, R. W. (1990) Multiple distinct subunits of the y-aminobutyric acid-A receptor protein show different ligand-binding affinities. Mol. Pharmacol. 37, 497–502.PubMedGoogle Scholar
  22. Burke, D., Andrews, C. J., and Knowles, L. (1971) The action of a GABA derivative in human spasticity. J. Neurol. 14, 199–208.Google Scholar
  23. Byberg, J. R., Hjeds, H., Krogsgaard-Larsen, P., and Jorgensen, F. S. (1993) Conformational analysis and molecular modelling of a partial GABAA agonist and a glycine antagonist related to the GABAA agonist, THIP. Drug Des. Discovery 10, 213–229.Google Scholar
  24. Byberg, J. R., Labouta, I. M., Falch, E., Hjeds, H., Krogsgaard-Larsen, P., Curtis, D. R., and Gynther, B. D. (1987) Synthesis and biological activity of a GABA-A agonist which has no effect on benzodiazepine binding and structurally related glycine antagonists. Drug Des. Delivery 1, 261–274.Google Scholar
  25. Caspary, D. M., Raza, A., Lawhorn Armour, B. A., Pippin, J., and Arneric, S. P. (1990) Immunocytochemical and neurochemical evidence for age-related loss of GABA in the inferior colliculus: implications for neural presbycusis. J. Neurosci. 10, 2363–2372.PubMedGoogle Scholar
  26. Cavalla, D. and Neff, N. H. (1985) Photoaffinity labeling of the GABAA receptor with [3H]muscimol. J. Neurochem. 44, 916–921.PubMedGoogle Scholar
  27. Chambon, J.-P., Feltz, P., Heaulme, M., Restle, S., Schlichter, R., Biziere, K., and Wermuth, C. G. (1985) An arylaminopyridazine derivative of y-aminobutyric acid (GABA) is a selective and competitive antagonist of the receptor sites. Proc. Natl. Acad. Sci. USA 82, 1832–1836.PubMedGoogle Scholar
  28. Cherubini, E., Gaiarsa, J. L., and Ben-Ari, Y. (1991) GABA: an excitatory transmitter in early postnatal life. Trends Neurosci. 14, 515–519.PubMedGoogle Scholar
  29. Curtis, D. R., Duggan, A. W., Felix, D., and Johnston, G. A. R. (1970) GABA, bicuculline and central inhibition. Nature 226, 1222–1224.PubMedGoogle Scholar
  30. Curtis, D. R., Game, C. J. A., Johnston, G. A. R., and McCulloch, R. M. (1974) Central effects of ß-(p-chlorophenyl)-y-aminobutyric acid. Brain Res. 70, 493–499.PubMedGoogle Scholar
  31. Curtis, D. R. and Johnston, G. A. R. (1974) Amino acid transmitters in the mammalian central nervous system. Ergebn. Physiol. 69, 97–188.PubMedGoogle Scholar
  32. Cutting, G. R., Lu, L., O’Hara, B. F., Kasch, L. M., Montrose-Rafizaheh, C., Donovan, D. M., Shimada, S., Antonorakis, S. E., Guggino, W. B., Uhl, G. R., and Kazazian, H. H. (1991) Cloning of the y-aminobutyric acid (GABA) r1 cDNA: a GABA receptor subunit highly expressed in retina. Proc. Natl. Acad. Sci. USA 88, 2673–2677.PubMedGoogle Scholar
  33. Dannhardt, G., Dominiak, P., and Laufer, S. (1993) Hypertensive effects and structure-activity relationships of 5-w-aminoalkyl isoxazoles. Drug Res. 43, 441–444.Google Scholar
  34. DeErasquin, G., Grooker, G., Costa, E., and Woscik, W. J. (1992) Stimulation of high affinity y-aminobutyric acide receptors potentiates the depolarization induced increaseGoogle Scholar
  35. of intraneuronal ionised calcium content in cerebellar granule neurons. Mol. Pharmacol. 42 407–414.Google Scholar
  36. DeFeudis, F. V. (1989) GABA agonists and analgesia. Drug News Perspect. 2, 172, 173.Google Scholar
  37. DeLorey, T. M. and Olsen, R. W. (1992) y-Aminobutyric acid, receptor structure and function. J. Biol. Chem. 267, 16,747–16, 750.Google Scholar
  38. DiChiara, G. and Gessa, G. L., eds. (1981) GAGA and the Basal Ganglia, Raven, New York.Google Scholar
  39. Djamgoz, M. B. A. (1995) Diversity of GABA receptors in the vertebrate outer retina. Trends Neurosci. 18, 118–120.Google Scholar
  40. Drew, C. A. and Johnston, G. A. R. (1992) Bicuculline-and baclofen-insensitive y-amino- butyric acid binding to rat cerebellar membranes. J. Neurochem. 58, 1087–1092.PubMedGoogle Scholar
  41. Ebert, B., Brehm, L., Wafford, K. A., Kristiansen, U., Kemp, J. A., and KrogsgaardLarsen, P. (1996) Structure and molecular pharmacology of thio-THIP. Eur. J. Med. Chem., submitted.Google Scholar
  42. Ebert, B., Wafford, K. A., Whiting, P. J., Krogsgaard-Larsen, R, and Kemp, J. A. (1994) Molecular pharmacology of y-aminobutyric acid type A receptor agonists and partial agonists in oocytes injected with different a, ß and y receptor subunit combinations. Mol. Pharmacol. 46, 957–963.PubMedGoogle Scholar
  43. Edvinsson, L., Larsson, B., and Skarby, T. (1980) Effect of the GABA receptor agonist muscimol on regional cerebral blood flow in the rat. Brain Res. 185, 445–448.PubMedGoogle Scholar
  44. Erdo, S. L. (1985) Peripheral GABAergic mechanisms. Trends Pharmacol. Sci. 6, 205–208.Google Scholar
  45. Erdo, S. L. and Bowery, N. G., eds. (1986) GABAergic Mechanisms in Mammalian Periphery, Raven, New York.Google Scholar
  46. Falch, E., Hedegaard, A., Nielsen, L., Jensen, B. R., Hjeds, H., and Krogsgaard-Larsen, P. (1986) Comparative stereostructure-activity studies on GABA, and GABAB receptor sites and GABA uptake using rat brain membrane preparations. J. Neurochem. 47, 898–903.Google Scholar
  47. Falch, E., Larsson, O. M., Schousboe, A., and Krogsgaard-Larsen, P. (1990) GABA-A agonists and GABA uptake inhibitors: structure-activity relationships. Drug Dey. Res. 21, 169–188.Google Scholar
  48. Fariello, R. G., Morselli, P. L., Lloyd, K. G., Quesney, L. F., and Engel, J., eds. (1984) Neurotransmitters, Seizures, and Epilepsy II, Raven, New York.Google Scholar
  49. Feigenspan, A., Wassle, H., and Bormann, J. (1993) Pharmacology of GABA receptor Cl-channels in rat retinal bipolar cells. Nature 361, 159–162.PubMedGoogle Scholar
  50. Foster, N. L., Chase, T. N., Denaro, A., Hare, T. A., and Tamminga, C. A. (1983) THIP treatment and Huntington’s chorea. Neurology 33, 637–639.PubMedGoogle Scholar
  51. Friedman, D. E. and Redburn, D. A. (1990) Evidence for functionally distinct subclasses of y-aminobutyric acid receptors in rabbit retina. J. Neurochem. 55, 1189–1199.PubMedGoogle Scholar
  52. Froestl, W., Mickel, S. J., Hall, R. G., von Sprecher, G., Strub, D., Baumann, P. A., Bragger, F., Gentsch, C., Jaekel, J., Olpe, H.-R., Rihs, G., Vassout, A., Waldmeier, P. C., and Bittiger, H. (1995a) Phosphinic acid analogues, of GABA. 1. New potent and selective GABAB agonists. J. Med. Chem. 38, 3297–3312.PubMedGoogle Scholar
  53. Froestl, W., Mickel, S. J., von Sprecher, G., Diel, P. J., Hall, R. G., Maier, L., Strub, D., Melillo, V., Baumann, R A., Bemasconi, R., Gentsch, C., Hauser, K., Jaekel, J., Karlsson, G., Klebs, K., Maître, L., Marescaux, C., Pozza, M. F., Schmutz, M., Steinmann, M. W., van Riezen, H., Vassout, A., Mondadori, C., Olpe, H.-R., Waldmeier, R C., and Bittiger, H. (1995b) Phosphinic acid analogues of GABA. 2. Selective, orally active GABAB antagonists. J. Med. Chem. 38, 3313–3331.PubMedGoogle Scholar
  54. Frolund, B., Ebert, B., Lawrence, L. W., Hurt, S. D., and Krogsgaard-Larsen, P. (1995a) Synthesis and receptor binding of 5-amino[3H]2methyl-3-isothiazolol ([3H]thiomuscimol), a specific GABAA agonist photoaffinity label. J. Labelled Compd. Radiopharm. 36, 877–889.Google Scholar
  55. Frolund, B., Jeppesen, L., Krogsgaard-Larsen, P., and Hansen, J. J. (1995b) GABAA agonists: resolution and pharmacology of (+)- and (—)-isoguvacine oxide. Chirality 7, 434–438.Google Scholar
  56. Frolund, B., Kristiansen, U., Brehm, L., Hansen, A. B., Krogsgaard-Larsen, P., and Falch, E. (1995c) Partial GABAA receptor agonists. Synthesis and in vitro pharmacology of a series of nonannulated analogs of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol. J. Med. Chem. 38, 3287–3296.PubMedGoogle Scholar
  57. Frolund, B. F., Kristiansen, U., Nathan, T., Falch, E., Lambert, J. D. C., and KrogsgaardLarsen, R (1992) 4-PIOL, a low-efficacy partial GABAA agonist, in Drug Research Related to Neuroactive Amino Acids, Alfred Benzon Symposium 32 (Schousboe, A., Diemer, N. H., and Kofod, H., eds.), Munksgaard, Copenhagen, pp. 449–460.Google Scholar
  58. Frydenvang, K., Krogsgaard-Larsen, R, Hansen, J. J., Mitrovic, A., Tran, H., Drew, C. A., and Johnston, G. A. R. (1994) GABAB antagonists: resolution, absolute stereochemistry and pharmacology of (R)- and (S)-phaclofen. Chirality 6, 583–589.PubMedGoogle Scholar
  59. Gammill, R. B. and Carter, D. B. (1993) Neuronal BZD receptors: new ligands, clones and pharmacology. Annu. Rep. Med. Chem. 28, 19–27.Google Scholar
  60. Guidotti, A. (1992) Imidazenil: a new partial positive allosteric modulator of the GABAA receptor. Neurosci. Facts 3, 71–72.Google Scholar
  61. Günther, U., Benson, J., Benke, D., Fritschy, J.-M., Reyes, G., Knoflach, F., Crestani, F., Aguzzi, A., Arigoni, M., Lang, Y., Bluethmann, H., Möhler, H., and Luscher, B. (1995) Benzodiazepine-insensitive mice generated by targeted disruption of the y2 subunit gene of y-aminobutyric acid type A receptors. Proc. Natl. Acad. Sci. USA 92, 7749–7753.Google Scholar
  62. Haefely, W. (1984) Pharmacological profile of two benzodiazepine partial agonists: Ro 16–6028 and Ro 17–1812. Clin. Neuropharmacol. 7 (Suppl. 1) 670–671.Google Scholar
  63. Haefely, W. and Polc, P. (1986) Physiology of GABA enhancement by benzodiazepines and barbiturates, in Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties (Olsen, R. W., Venter, J. C., eds.), Alan R. Liss, New York, pp. 97–133.Google Scholar
  64. Hahner, L., McQuilkin, S., and Harris, R. A. (1991) Cerebellar GABAB receptors modulate function of GABAA receptors. FASEB J. 5, 2466–2472.PubMedGoogle Scholar
  65. Hall, R. C. and Zisool, S. (1981) Paradoxical reactions to benzodiazepines. Br. J. Clin. Pharmacol. 11, 99S - 1045.PubMedGoogle Scholar
  66. Hanada, S., Mita, S., Nishino, N., and Tanaka, C. (1987) [3H]Muscimol binding sites increased in autopsied brains of chronic schizophrenics. Life Sci. 40, 259–266.Google Scholar
  67. Hansen, G. H., Belhage, B., and Schousboe, A. (1992) First direct electron microscopic visualization of a tight spatial coupling between GABAA-receptors and voltage sensitive calcium channels. Neurosci. Lett. 137, 14–18.PubMedGoogle Scholar
  68. Harrison, N. L. and Simmonds, M. A. (1984) Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res. 323, 287–292.PubMedGoogle Scholar
  69. Hoehn-Saric, R. (1983) Effects of THIP on chronic anxiety. Psychopharmacology 80, 338–341.PubMedGoogle Scholar
  70. Hunkeler, W., Möhler, H., Pieri, L., Polc, R, Bonetti, E. R, Cumin, R., Schaffner, R., and Haefely, W. (1981) Selective antagonists of benzodiazepines. Nature 290, 514–516.PubMedGoogle Scholar
  71. Huston, E., Gullen, G., Sweeney, M. I., Pearson, H., Fazeli, M. S., and Dolphin, A. C. (1993) Pertussis toxin treatment increases glutamate release and dihydropyridine binding sites in cultured rat cerebellar granule neurons. Neuroscience 52, 787–798.PubMedGoogle Scholar
  72. Huston, E., Scott, R. H., and Dolphin, A. C. (1990) A comparison of the effect of calcium channel ligands and GABAB agonists and antagonists in transmitter release and somatic calcium currents in cultured neurons. Neuroscience 38, 721–729.PubMedGoogle Scholar
  73. Johnston, G. A. R. (1986) Multiplicity of GABA receptors, in Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties ( Olsen, R. W. and Venter, J. C., eds.), Alan R. Liss, New York, pp. 57–71.Google Scholar
  74. Johnston, G. A. R., Beart, P. M., Curtis, D. R., Game, C. J. A., McCulloch, R. M., and MacLachlan, R. M. (1972) Bicuculline methochloride as a GABA antagonist. Nature (New Biol.) 240, 219, 220.Google Scholar
  75. Johnston, G. A. R., Curtis, D. R., Beart, P. M., Game, C. J. A., McCulloch, R. M., and Twitchin, B. (1975a) Cis-and Trans-4-aminocrotonic acid as GABA analogues of restricted conformation. J. Neurochem. 24, 157–160.PubMedGoogle Scholar
  76. Johnston, G. A. R., Krogsgaard-Larsen, P., and Stephanson, A. (1975b) Betel nut constituents as inhibitors of y-aminobutyric acid uptake. Nature 258, 627–628.PubMedGoogle Scholar
  77. Kardos, J., Elster, L., Damgaard, I., Krogsgaard-Larsen, P., and Schousboe, A. (1994) Role of GABAB receptors in intracellular Cat+ homeostasis and possible interaction between GABAA and GABAB receptors in regulation of transmitter release in cerebellar granule neurons. J. Neurosci. Res. 39, 646–655.Google Scholar
  78. Kendall, D. A., Browner, M., and Enna, S. J. (1982) Comparison of the antinociceptive effect of GABA agonists: evidence for a cholinergic involvement. J. Pharmacol. Exp. Ther. 220, 482–487.PubMedGoogle Scholar
  79. Kerr, D. I. B. and Ong, J. (1986) GABAB-receptors in peripheral function, in GABAergic Mechanisms in Mammalian Periphery ( Erdo, S. L. and Bowery, N. G., eds.), Raven, New York, pp. 239–259.Google Scholar
  80. Kerr, D. I. B., Ong, J., Prager, R. H., Gynther, B. D., and Curtis, D. R. (1987) Phaclofen: a peripheral and central baclofen antagonist. Brain Res. 405, 150–154.PubMedGoogle Scholar
  81. Kiuchi, Y., Kobayashi, T., Takeuchi, J., Shimuzu, H., Ogata, H., and Toni, M. (1989) Benzodiazepine receptors increase in post-mortem brain of chronic schizophrenics. Eur. Arch. Psychiat. Neurol. Sci. 239, 71–78.Google Scholar
  82. Korpi, E. R., Uusi-Oukari, M., and Wegelius, K. (1992) Substrate specificity of diazepam-insensitive cerebellar [3H]Ro 15–4513 binding sites. Eur. J. Pharmacol. 213, 323–329.PubMedGoogle Scholar
  83. Korsgaard, S., Casey, D. E., Gerlach, J., Hetmar, O., Kaldan, B., and Mikkelsen, L. B. (1982) The effect of tetrahydroisoxazolopyridinol (THIP) in tardive dyskinesia. Arch. Gen. Psychiatry 39, 1017–1021.PubMedGoogle Scholar
  84. Kristiansen, U., Hedegaard, A., Herdeis, C., Lund, T. M., Nielsen, B., Hansen, J. J., Falch, E., Hjeds, H., and Krogsgaard-Larsen, P. (1992) Hydroxylated analogues of 5-aminovaleric acid as 4-aminobutyric acidB receptor antagonists: stereostructureactivity relationships. J. Neurochem. 58, 1150–1159.PubMedGoogle Scholar
  85. Kristiansen, U., Lambert, J. D. C., Falch, E., and Krogsgaard-Larsen, P. (1991) Electrophysiological studies of the GABAA receptor ligand, 4-PIOL, on cultured hippocampal neurones. Br. J. Pharmacol. 104, 85–90.Google Scholar
  86. Krnjevic, K. (1974) Chemical nature of synaptic transmission in vertebrates. Physiol. Rev. 54, 418–540.Google Scholar
  87. Krogsgaard-Larsen, P. (1988) GABA synaptic mechanisms: stereochemical and conformational requirements. Med. Res. Rev. 8, 27–56.PubMedGoogle Scholar
  88. Krogsgaard-Larsen, P., Falch, E., and Christensen, A. V. (1984) Chemistry and pharmacology of the GABA agonists THIP (Gaboxadol) and isoguvacine. Drugs Fut. 9, 597–618.Google Scholar
  89. Krogsgaard-Larsen, P., Falch, E., and Hjeds, H. (1985) Heterocyclic analogues of GABA: chemistry, molecular pharmacology and therapeutic aspects. Prog. Med. Chem. 22, 67–120.PubMedGoogle Scholar
  90. Krogsgaard-Larsen, P., Falch, E., Larsson, O. M., and Schousboe, A. (1987) GABA up- take inhibitors: relevance to antiepileptic drug research. Epilepsy Res. 1, 77–93.PubMedGoogle Scholar
  91. Krogsgaard-Larsen, P., Frolund, B., Jorgensen, F. S., and Schousboe, A. (1994) GABAA receptor agonists, partial agonists, and antagonists. Design and therapeutic prospects. J. Med. Chem. 37, 2489–2505.PubMedGoogle Scholar
  92. Krogsgaard-Larsen, P. and Hansen, J. J., eds. (1992) Excitatory Amino Acid Receptors: Design ofAgonists and Antagonists, Ellis Horwood, Chichester, UK.Google Scholar
  93. Krogsgaard-Larsen, P., Hjeds, H., Curtis, D. R., Lodge, D., and Johnston, G. A. R. (1979) Dihydromuscimol, thiomuscimol and related heterocyclic compounds as GABA analogues. J. Neurochem. 32, 1717–1724.PubMedGoogle Scholar
  94. Krogsgaard-Larsen, P., Hjeds, H., Falch, E., Jorgensen, F. S., and Nielsen, L. (1988) Recent advances in GABA agonists, antagonists and uptake inhibitors: structure-activity relationships and therapeutic potential. Adv. Drug Res. 17, 381–456.Google Scholar
  95. Krogsgaard-Larsen, P., Jacobsen, P., Brehm, L., Larsen, J.-J., and Schaumburg, K. (1980) GABA agonists and uptake inhibitors designed as agents with irreversible actions. Eur. J. Med. Chem. 15, 529–535.Google Scholar
  96. Krogsgaard-Larsen, P. and Johnston, G. A. R. (1975) Inhibition of GABA uptake in rat brain slices by nipecotic acid, various isoxazoles and related compounds. J Neurochem. 25, 797–802.PubMedGoogle Scholar
  97. Krogsgaard-Larsen, P., Johnston, G. A. R., Lodge, D., and Curtis, D. R. (1977) A new class of GABA agonist. Nature 268, 53–55.PubMedGoogle Scholar
  98. Krogsgaard-Larsen, P., Mikkelsen, H., Jacobsen, P., Falch, E., Curtis, D. R., Peet, M. J., and Leah, J. D. (1983) 4,5,6,7-Tetrahydroisothiazolo[5,4-c]pyridin-3-ol and related analogues of THIP. Synthesis and biological activity. J. Med. Chem. 26, 895–900.Google Scholar
  99. Krogsgaard-Larsen, P., Nielsen, L., Falch, E., and Curtis, D. R. (1986) GABA agonists. Resolution, absolute stereochemistry, and enantioselectivity of (S)-(+)- and (R)-(—) dihydromuscimol. J. Med. Chem. 28, 1612–1617.Google Scholar
  100. Krogsgaard-Larsen, P., Snowman, A., Lummis, S. C., and Olsen, R. W. (1981) Characterization of the binding of the GABA agonist [3H]piperidine-4-sulfonic acid to bovine brain synaptic membranes. J. Neurochem. 37, 401–409.PubMedGoogle Scholar
  101. Lambert, J. J., Belelli, D., Hill-Venning, C., and Peters, J. A. (1995) Neurosteroids and GABAA receptor function. Trends Pharmacol. Sci. 16, 295–303.PubMedGoogle Scholar
  102. Levi, G. and Gallo, V. (1981) Glutamate as a putative transmitter in the cerebellum: stimulation by GABA of glutamic acid release from specific pools. J. Neurochem. 37, 22–31.PubMedGoogle Scholar
  103. Lodge, D., ed. (1988) Excitatory Amino Acids in Health and Disease, John Wiley, Chichester, UK.Google Scholar
  104. Lopez, I., Wu, J. Y., and Meza, G. (1992) Immunocytochemical evidence for an afferent GABAergic neurotransmission in the guinea pig vestibular system. Brain Res. 589, 341–348.PubMedGoogle Scholar
  105. Loscher, W. (1989) GABA and the epilepsies. Experimental and clinical conditions, in GABA: Basic Research and Clinical Applications ( Bowery, N. G. and Nistico, G., eds.), Pythagora, Rome, pp. 260–300.Google Scholar
  106. Lüddens, H., Pritchett, D. B., Kohler, M., Killisch, I., Keinänen, K., Moneyer, H., Sprengel, R., and Seeburg, P. H. (1990) Cerebellar GABAA receptor selective for a behavioural alcohol antagonist. Nature 346, 648–651.PubMedGoogle Scholar
  107. Macdonald, R. L. and Olsen, R. W. (1994) GABAA receptor channels. Annu. Rev. Neurosci. 17, 569–602.PubMedGoogle Scholar
  108. Maksay, G. (1994) Thermodynamics of y-aminobutyric acid type A receptor binding differentiate agonists from antagonists. Mol. Pharmacol. 46, 386–390.PubMedGoogle Scholar
  109. Malcangio, M., Malmberg-Aiello, P., Giotti, A., Ghelardini, C., and Bartolini, A. (1992) Desensitization of GABA, receptors and antagonism by CGP 35348 prevent bicucullineand picrotoxin-induced antinociception. Neuropharmacology 31, 783–791.PubMedGoogle Scholar
  110. Malminiemi, O. and Korpi, E. S. (1989) Diazepam-insensitive [3H]Ro 15–4513 binding in intact cultured cerebellar granule cells. Eur. J. Pharmacol. 169, 53–60.PubMedGoogle Scholar
  111. Mathers, D. A. (1987) The GABAA receptor: new insights from single-channel recording. Synapse 1, 96–101.PubMedGoogle Scholar
  112. McNeil, R. G., Gee, K. W., Bolger, M. B., Lan, N. C., Wieland, S., Belelli, D., Purdy, R. H., and Paul, S. M. (1992) Neuroactive steroids that act at GABAA receptors. Drug News Perspect. 5, 145–152.Google Scholar
  113. Meier, E., Drejer, J., and Schousboe, A. (1984) GABA induces functionally active low-affinity GABA receptors on cultured cerebellar granule cells. J. Neurochem. 43, 17371744.Google Scholar
  114. Meldrum, B. (1982) GABA and acute psychoses. Psychol. Med. 12, 1–5.PubMedGoogle Scholar
  115. Melikian, A., Schlewer, G, Chambon, J.-P., and Wermuth, C. G. (1992) Condensation of muscimol or thiomuscimol with aminopyridazines yields GABA-A antagonists. J. Med. Chem. 35, 4092–4097.PubMedGoogle Scholar
  116. Merz, W. A., Alterwain, P., Ballmer, U., Bechelli, L., Capponi, R., Munoz, J. G., Marquez, C., Nestoros, J., Almanzor, L. R., Udabe, R. U., and Versiani, M. (1988) Treatment of paranoid schizophrenia with the partial benzodiazepine agonist, Ro 16–6028. Psychopharmacol. 95–96 (Suppl.), 237.Google Scholar
  117. Minchin, M. C. W., Ennis, C., Lattimer, N., White, J. F., White, A. C., and Lloyd, K. G. (1992a) The GABAA-like autoreceptor is a pharmacologically novel GABA receptor, in GABAergic Synaptic Transmission ( Biggio, G., Concas, A., and Costa, E., eds.), Raven, New York, pp. 199–203.Google Scholar
  118. Minchin, M. C. W., White, A. C., and White, J. F. (1992b) Novel GABA autoreceptor antagonists. Current Drugs 2, 1878–1880.Google Scholar
  119. Mitchell, R. (1980) A novel GABA receptor modulates stimulus induced glutamate release from cortico-striatal terminals. Eur. J. Pharmacol. 67, 119–122.PubMedGoogle Scholar
  120. Möhler, H., Knoflach, F., Paysan, J., Motejlek., K., Benke, D., Luscher, B., and Fritschy, J. M. (1995) Heterogeneity of GABAA-receptors: cell-specific expression, pharmacology, and regulation. Neurochem. Res. 20, 631–636.Google Scholar
  121. Möhler, H. and Okada, T. (1977) Benzodiazepine receptors: demonstration in the central nervous system. Science 198, 849–851.PubMedGoogle Scholar
  122. Morselli, P. L., Loscher, W., Lloyd, K. G., Meldrum, B., and Reynolds, E. H., eds. (1981) Neurotransmitters, Seizures, and Epilepsy, Raven, New York.Google Scholar
  123. Nayeem, N., Green, T. P., Martin, I. L., and Barnard, E. A. (1994) Quaternary structure of the native GABAA receptor determined by electron microscopic image analysis. J. Neurochem. 62, 815–818.PubMedGoogle Scholar
  124. Nielsen, E. O., Aarslew-Jensen, M., Diemer, N. H., Krogsgaard-Larsen, P., and Schousboe, A. (1989) Baclofen-induced, calcium-dependent stimulation of in vivo release of D-[3HJaspartate from rat hippocampus monitored by intracerebral microdialysis. Neurochem. Res. 14, 321–326.PubMedGoogle Scholar
  125. Nielsen, L., Brehm, L., and Krogsgaard-Larsen, P. (1990) GABA agonists and uptake inhibitors. Synthesis, absolute stereochemistry, and enantioselectivity of (R)-(—)- and (S)-(+)-homo-ß-proline. J. Med. Chem. 33 71–77.Google Scholar
  126. Nielsen, M., Witt, M.-R., Ebert, B., and Krogsgaard-Larsen, P. (1995) Thiomuscimol, a new photoaffinity label for the GABAA receptor. Eur. J. Pharmacol. Mol. Pharmacol. Sect. 289, 109–112.Google Scholar
  127. Nistico, G., Morselli, P. L., Lloyd, K. G., Fariello, R. G., and Engel, J., eds. (1986) Neurotransmitters, Siezures, and Epilepsy III, Raven, New York.Google Scholar
  128. Olsen, R. W., Bureau, M. H., Edno, S., and Smith, G. (1991) The GABAA receptor family in the mammalian brain. Neurochem. Res. 16, 317–325.PubMedGoogle Scholar
  129. Olsen, R. W. and Tobin, A. J. (1990) Molecular biology of GABAA receptors. FASEB J. 4, 1469–1480.Google Scholar
  130. Olsen, R. W. and Venter, J. C., eds. (1986) Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties, Alan R. Liss, New York.Google Scholar
  131. Ong, J. and Kerr, D. I. B. (1990) GABA-receptors in peripheral tissues. Life Sci. 46, 1489–1501.PubMedGoogle Scholar
  132. Ong, J., Kerr, D. I. B., Capper, H. R., and Johnston, G. A. R. (1990) Cortisone, a potent GABAA antagonist in the guinea-pig isolated ileum. J. Pharm. Pharmacol. 42, 662–664.PubMedGoogle Scholar
  133. Ong, J., Kerr, D. I. B., and Johnston, G. A. R. (1987) Cortisol: a potent biphasic modulator at GABAA-receptor-complexes in the guinea-pig isolated ileum. Neurosci. Lett. 82, 101–106.PubMedGoogle Scholar
  134. Palay, S. and Chan-Palay, V. (1982) The cerebellum-new vistas. Exp. Brain. Res. Suppl. 6, 1–620.Google Scholar
  135. Petersen, H. R., Jensen, I., and Dam, M. (1983) THIP: a single-blind controlled trial in patients with epilepsy. Acta Neurol. Scand. 67, 114–117.Google Scholar
  136. Peyron, R., Cinotti, L., Le Bars, D., Garcia-Larrea, L., Galy, G., Landais, P., Millet, P., Lavenne, F., Froment, J. C., Krogsgaard-Larsen, F., and Mauguiere, F. (1994b) Effects of GABAA receptor activation on brain glucose metabolism in normal subjects and temporal lobe epilepsy (TLE) patients. A positron emission tomography (PET) study. II. The focal hypometabolism is reactive to GABAA agonist administration in TLE. Epilepsy Res. 19, 55–62.Google Scholar
  137. Peyron, R., Le Bars, D., Cinotti, L., Garcia-Larrea, L., Galy, G., Landais, P., Millet, P., Lavenne, F., Froment, J. C., Krogsgaard-Larsen, P., and Mauguiere, F. (1994a) Effects of GABAA receptor activation on brain glucose metabolism in normal subjects and temporal lope epilepsy (TLE) patients. A positron emission tomography (PET) study. I. Brain glucose metabolism is increased after GABAA receptors activation. Epilepsy Res. 19, 45–54.PubMedGoogle Scholar
  138. Prince, R. J. and Simmonds, M. A. (1993) Differential antagonism by epipregnanolone of alphaxalone and pregnanolone potentiation of [3H]flunitrazepam binding suggests more than one class of binding site for steroids at GABAA receptors. Neuropharmacology 32, 59–63.PubMedGoogle Scholar
  139. Qian, H. and Dowling, J. E. (1993a) Novel GABA responses from rod-driven retinal horizontal cells. Nature 361, 162–164.PubMedGoogle Scholar
  140. Qian, H., and Dowling, J. E. (1993b) GABA responses on retinal bipolar cells. Biol. Bull. 185 312.Google Scholar
  141. Qian, H. and Dowling, J. E. (1994) Pharmacology of novel GABA receptors found on rod horizontal cells of the white perch retina. J. Neurosci. 14, 4299–4307.PubMedGoogle Scholar
  142. Redburn, D. A. and Schousboe, A., eds. (1987) Neurotrophic Activity of GABA During Development, Alan R. Liss, New York.Google Scholar
  143. Ring, H. A. and Reynolds, E. H. (1990) Vigabatrin and behaviour disturbance. Lancet 335, 970.PubMedGoogle Scholar
  144. Roberts, E. (1976) Disinhibition as an organizing principle in the nervous system—the role of the GABA system. Application to neurologic and psychiatric disorders, in GABA in Nervous System Function ( Roberts, E., Chase, T. N., and Tower, D. B., eds.), Raven, New York, pp. 515–539.Google Scholar
  145. Roberts, E. (1986) GABA: the road to neurotransmitter status, in Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties ( Olsen, R. W., and Venter, J. C., eds.), Alan R. Liss, New York, pp. 1–39.Google Scholar
  146. Roberts, E. (1991) Living systems are tonically inhibited, autonomous optimizers, and disinhibition coupled to a variability generation is their major organizing principle: inhibitory command-control at levels of membrane, genome, metabolism, brain, and society. Neurochem. Res. 16, 409–421.PubMedGoogle Scholar
  147. Robinson, M. K., Richens, A., and Oxley, R. (1990) Vigabatrin and behaviour disturbances. Lancet 336, 504.PubMedGoogle Scholar
  148. Rognan, D., Boulanger, T., Hoffmann, R., Vercauteren, D. P., Andre, J.-M., Durant, F., and Wermuth, C. G. (1992) Structure and molecular modeling of GABAA receptor antagonists. J. Med. Chem. 35, 1969–1977.Google Scholar
  149. Roland, P. E. and Friberg, L. (1988) The effect of the GABAA agonist THIP on regional cortical blood flow in humans. A new test of hemispheric dominans. J. Cereb. Blood Flow Metab. 8, 314–323.PubMedGoogle Scholar
  150. Rorsman, P., Berggren, P.-O., Bokvist, K., Ericson, H., Möhler, H., Ostenson, C.-G., and Smith, P. A. (1989) Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature 341, 233–236.PubMedGoogle Scholar
  151. Ryan, A. F. and Schwartz, I. R. (1986) Nipecotic acid: preferential accumulation in the cochlea by GABA uptake systems and selective retrograde transport to brainstem. Brain Res. 399, 399–403.PubMedGoogle Scholar
  152. Saito, A., Wu, J. Y., and Lee, T. J. (1985) Evidence for the presence of cholinergic nerves in cerebral arteries: an immunohistochemical demonstration of choline acetyltransferase. J. Cereb. Blood Flow Metab. 5, 327–334.PubMedGoogle Scholar
  153. Sander, J. W. and Hart, Y. M. (1990) Vigabatrin and behaviour disturbances. Lancet 335, 57.PubMedGoogle Scholar
  154. Sawynok, J. (1989) GABAergic agents as analgesics, in GABA: Basic Research and Clinical Applications ( Bowery, N. G. and Nistico, G., eds.), Pythagora, Rome, pp. 383–399.Google Scholar
  155. Schousboe, A., Diemer, N. H., and Kofod, H. eds. (1992a) Drug Research Related to Neuroactive Amino Acids,Munksgaard, Copenhagen.Google Scholar
  156. Schousboe, A., Hansen, G. H., and Belhage, B. (1992b) Regulation of neurotransmitter release by GABAA receptors in glutamatergic neurons, in New Leads and Targets in Drug Research ( Krogsgaard-Larsen, P., Christensen, S. B., and Kofod, H., eds.), Munksgaard, Copenhagen, pp. 176–186.Google Scholar
  157. Schousboe, A., Larsson, O. M., Hertz, L., and Krogsgaard-Larsen, P. (1981) Heterocyclic GABA analogues as new selective inhibitors of astroglial GABA transport. Drug Dev. Res. 1, 115–127.Google Scholar
  158. Schousboe, A., Thorbek, P., Hertz, L., and Krogsgaard-Larsen, P. (1979) Effects of GABA analogues of restricted conformation on GABA transport in astrocytes and brain cortex slices and on GABA receptor binding. J. Neurochem. 33, 181–189.Google Scholar
  159. Serra, M., Foddi, M. C., Ghiani, C. A., Melis, M. A., Motzo, C., Concas, A., Sanna, E., and Biggio, G. (1992) Pharmacology of y-aminobutyric acid, receptor complex after the in vivo administration of the anxioselective and anticonvulsant f3-carboline derivative abecarnil. Pharmacol. Exp. Ther. 263, 1360–1368.Google Scholar
  160. Sieghart, W. (1992) GABA, receptors: ligand-gated Cl— ion channels modulated by multiple drug-binding sites. Trends Pharmacol. Sci. 13, 446–450.PubMedGoogle Scholar
  161. Sieghart, W. (1995) Structure and pharmacology of y-aminobutyric acid, receptor subtypes. Pharmacol. Rev. 47, 181–234.PubMedGoogle Scholar
  162. Sieghart, W., Eichinger, A., Richards, J. G., and Möhler, H. (1987) Photoaffinity labeling of benzodiazepine receptor proteins with the partial inverse agonist [3H]Ro 15–4513: a biochemical and autoradiographic study. J. Neurochem. 48, 46–52.PubMedGoogle Scholar
  163. Sivilotti, L. and Nistri, A. (1991) GABA inhibits neuronal activity by activating GABAB receptors coupled to K* channels. Prog. Neurobiol. 36, 35–92.PubMedGoogle Scholar
  164. Smith, G. B. and Olsen, R. W. (1995) Functional domains of GABA, receptors. Trends Pharmacol. Sci. 16, 162–168.PubMedGoogle Scholar
  165. Solimena, M. and De Camilli, P. (1993) Spotlight on a neuronal enzyme. Nature 366, 15–17.Google Scholar
  166. Squires, R. F. and Braestrup, C. (1977) Benzodiazepine receptors in rat brain. Nature 266, 732–734.PubMedGoogle Scholar
  167. Squires, R. F., Lajtha, A., Saederup, E., and Palkovits, M. (1993) Reduced [3H]flunitrazepam binding in cingulate cortex and hippocampus of post mortem schizophrenic brains: is selective loss of glutamatergic neurons associated with major psychoses. Neurochem. Res. 18, 219–223.PubMedGoogle Scholar
  168. Squires, R. F. and Saederup, E. (1991) A review of evidence for GABAergic predominance/glutamertergic deficit as a common etiological factor in both schizophrenia and affective psychoses: more support for a continuum hypothesis of“functional” psychosis. Neurochem. Res. 16, 1099–1111.PubMedGoogle Scholar
  169. Stone, T. W. (1979) Glutamate as the neurotransmitter of cerebellar granule cells in the rat: electrophysiological evidence. Br. J. Pharmacol. 66, 291–296.PubMedGoogle Scholar
  170. Supavilai, P. and Karobath, M. (1985) Modulation of acetylcholine release from rat striatal slices by the GABA/benzodiazepine receptor complex. Life Sci. 36, 417–426.PubMedGoogle Scholar
  171. Tallman, J. F., Paul, S. M., Skolnick, P., and Gallager, D. W. (1980) Receptors for the age of anxiety: pharmacology of the benzodiazepines. Science 207, 274–281.PubMedGoogle Scholar
  172. Tamminga, C. A., Crayton, J. W., and Chase, T. N. (1978) Muscimol: GABA agonist therapy in schizophrenia. Am. J. Psychiat. 135, 746–747.PubMedGoogle Scholar
  173. Tamminga, C. A., Crayton, J. W., and Chase, T. N. (1979) Improvement of tardive dyskinesia after muscimol therapy. Arch. Gen. Psychiat. 36, 595–598.PubMedGoogle Scholar
  174. Thaker, G. K., Hare, T. A., and Tamminga, C. A. (1983) GABA system: clinical research and treatment of tardive dyskinesia. Mod. Probi. Pharmacopsychiat. 21, 155–167.Google Scholar
  175. Thaker, G. K., Nguyen, J. A., and Tamminga, C. A. (1989) Increased saccadic distractability in tardive dyskinesia: functional evidence for subcortical GABA dysfunction. Biol. Psychiatry 25, 49–59.PubMedGoogle Scholar
  176. Theobald, W., Buch, O., Kunz, H. A., Krupp, P., Stenger, E. G., and Heimann, H. (1968) Pharmakologische und experimentalpsychologische untersuchungen mit 2 inhaltsstoffen des fliegenpilzes (amanita muscaria). Arzneim. Forsch. 18, 311–315.Google Scholar
  177. Tirsch, R., Yang, X.-D., Singer, S. M., Liblau, R. S., Fugger, L., and McDevitt, H. O. (1993) Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 366, 72–75.Google Scholar
  178. Travagli, R. A., Ulivi, M., and Wojcik, W. J (1991) y-Aminobutyric acid-B receptors inhibit glutamate release from cerebellar granule cells: consequences of inhibiting cyclic AMP formation and calcium influx. J. Pharm. Exp. Ther. 258, 903–909.Google Scholar
  179. Usami, S., Hozawa, J., Tazawa, M., Igarashi, M., Thompson, G. C., Wu, J. Y., and Wenthold, R. J. (1989) Immunocytochemical study of the GABA system in chicken vestibular endorgans and the vestibular ganglion. Brain Res. 503, 214–218.PubMedGoogle Scholar
  180. Van Ness, P. C., Watkins, A. E., Bergman, M. O., Tourtelotte, W. W., and Olsen, R. W. (1982) y-Aminobutyric acid receptors in normal human brain and Huntington’s disease. Neurology 32, 63–68.Google Scholar
  181. Venault, P., Chapouthier, G., Prado de Carvalho, L., Simiand, J., Morre, M., Dodd, R. H., and Rossier, J. (1986) Benzodiazepine impairs and f 3-carboline enhances performance in learning and memory tasks. Nature 321, 864–866.PubMedGoogle Scholar
  182. Verdoorn, T. A., Draguhn, A., Ymer, S., Seeburg, R. H., and Sakmann, B. (1990) Functional properties of recombinant rat GABAA receptors depend upon subunit composition. Neuron 4, 919–928.PubMedGoogle Scholar
  183. Virmani, M. A., Stojilkovic, S. S., and Catt, K. J. (1990) Stimulation of luteinizing hormone release by y-aminobutyric acid (GABA) agonists: mediation by GABAA-type receptors and activation of chloride and voltage-sensitive calcium channels. Endocrinology 126, 2499–2505.PubMedGoogle Scholar
  184. Walton, M. K., Schaffner, A. E., and Barker, J. L. (1993) Sodium channels, GABAA receptors, and glutamate receptors develop sequentially on embryonic rat spinal cord cells. J. Neurosci. 13, 2068–2084.PubMedGoogle Scholar
  185. Wermuth, C. G. and Biziére, K. (1986) Pyridazinyl-GABA derivatives: a new class of synthetic GABAA antagonists. Trends Pharmacol. Sci. 7, 421–424.Google Scholar
  186. Wermuth, C. G., Bourguignon, J.-J., Schlewer, G., Gies, J.-P., Schoenfelder, A., Melikian, A., Bouchet, M.-J., Chantreux, D., Molimard, J.-C., Heaulme, M., Chambon, J.-P., and Biziére, K. (1987) Synthesis and structure-activity relationships of a series of aminopyridazine derivatives of y-aminobutyric acid acting as selective GABA-A antagonists. J. Med. Chem. 30, 239–249.Google Scholar
  187. Wheal, H. and Thomson, A., eds. (1995) Excitatory Amino Acids and Synaptic Transmission, 2nd ed, Academic, London.Google Scholar
  188. Wieland, H. A., Luddens, H., and Seeburg, R. H. (1992) A single histidine in GABAA receptors is essential for benzodiazepine agonist binding. J. Biol. Chem. 267, 1426–1429.PubMedGoogle Scholar
  189. Woodward, R. M., Polenzani, L., and Miledi, R. (1993) Characterization of bicuculline/ baclofen-insensitive (r-like) y-aminobutyric acid receptors expressed in Xenopus oocytes. II. Pharmacology of y-aminobutyric acidA and y-aminobutyric acidB receptor agonists and antagonists. Mol. Pharmacol. 43, 609–625.PubMedGoogle Scholar
  190. Wurtman, R. J., Corkin, S., Growdon, J. H., and Ritter-Walker, E., eds. (1990) Advances in Neurology, vol. 51. Alzheimer’s Disease, Raven, New York.Google Scholar
  191. Zhang, P., Zhang, W., Liu, R., Harris, B., Skolnick, P., and Cook, J. M. (1995) Synthesis of novel imidazobenzodiazepines as probes of the pharmacophore for “diazepam-insensitive” GABAA receptors. J. Med. Chem. 38, 1679–1688.PubMedGoogle Scholar
  192. Zorn, S. H. and Enna, S. J. (1987) The GABA agonist THIP attenuates antinociception in the mouse by modifying central cholinergic transmission. Neuropharmacology 26, 433–437.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Povl Krogsgaard-Larsen
  • Bente Frølund
  • Bjarke Ebert

There are no affiliations available

Personalised recommendations