Nucleic Acid Blotting Techniques

Theory and Practice
  • Sharon Collins Presnell
Part of the Pathology and Laboratory Medicine book series (PLM)

Abstract

This chapter deals with basic concepts and techniques in nucleic acid blotting. In principle, the techniques of Southern blotting (DNA) and northern blotting (RNA) are very similar. Negatively charged, purified nucleic acid from prokaryotic or eukaryotic cells is separated according to size by electrophoresis through an agarose gel matrix. The RNA or denatured DNA is subsequently transferred and immobilized onto a membrane composed of nitrocellulose or nylon. The nucleic acids on the membrane are then hybridized to a specific labeled “probe,” which consists of homologous single-stranded nucleic acids that carry molecules allowing detection and visualization of the hybridized probe. Hybridization between the immobilized nucleic acids and labeled probe allows detection of specific DNA or RNA sequences within a complex mixture of DNA or RNA. The specific method of detection and visualization is dependent on the nature of the labeled probe; radioactive probes enable autoradiographic detection, and probes labeled with enzymes facilitate chemiluminescent or colorimetric detection. Nucleic acid blotting yields valuable information pertaining to gene integrity and copy number (Southern blot) and provides a means of analyzing gene expression (northern blot). These methods are widely used to characterize tissues and cultured cells in the laboratory, and often provide valuable information for clinical evaluation of patient samples.

Keywords

Northern Blot Nylon Membrane Label Probe Hybridization Membrane Capillary Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Southern, E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517, 1975.PubMedCrossRefGoogle Scholar
  2. 2.
    Stark, G. R. and Wahl, G. M. Gene amplification. Ann. Rev. Biochem. 53:447–491, 1984.PubMedCrossRefGoogle Scholar
  3. 3.
    Ruiz, J. C., Choi, K., Vontloff, D. D., Runinson, I. B., and Wahl, G. M. Autonomously replicating episomes contain mdrl genes in a multidrug-resistant cell line. Mol. Cell. Biol. 9:109–115, 1989.PubMedGoogle Scholar
  4. 4.
    Sambrook, J., Fritsch, E. F., and Maniatis, T., eds. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1992.Google Scholar
  5. 5.
    Kroczek, R. A. Southern and northern analysis. J. Chromator. 618:133–145, 1993.CrossRefGoogle Scholar
  6. 6.
    Bostian, K. A., Lee, R. C., and Halvorson, H. O. Preparative fractionation of nucleic acids by agarose gel electrophoresis. Anal. Biochem. 95: l 74–182, 1979.Google Scholar
  7. 7.
    Knowland, J. S. Polyacrylamide gel electrophoresis of nucleic acids synthesized during early development of Xenopus laevis daudin. Biochem. Biophys. Acta 204:416 429, 1970.Google Scholar
  8. 8.
    Preat, T. High resolution southern analysis of genomic DNA using heat denatured acrylamide gels. Nucleic Acids Res. 18:1073–1076, 1990.PubMedCrossRefGoogle Scholar
  9. 9.
    Vesterburg, O. A short history of electrophoretic methods. Electrophoresis 14:1243–1249, 1993.CrossRefGoogle Scholar
  10. 10.
    Burmeister, M. and Ulanovsky, L. Pulsed-Field Gel Electrophoresis. Humana, Totowa, NJ, 1992.CrossRefGoogle Scholar
  11. 11.
    Van Oss, C. J., Good, R. J., and Chaudhury, M. K. Mechanism of DNA (Southern) and protein (Western) blotting on cellulose nitrate and other membranes. J. Chromator. 391:53–65, 1987.CrossRefGoogle Scholar
  12. 12.
    Wahi, G. M., Stern, M., and Stark, G. R. Effiicient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl paper and rapid hybridization by using dextran sulphate. Proc. Natl. Acad. Sci. USA 76:3683–3687, 1987.Google Scholar
  13. 13.
    Chomczynski, P. One hour downward alkaline capillary transfer for blotting of DNA and RNA. Anal. Biochem. 201:134–139, 1992.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhou, M. Y., Di, X., Gomez-Sanchez, P., and Gomez-Sanchez, E. Improved downward capillary transfer for blotting of DNA and RNA. Biotechniques 16:58,59, 1994.Google Scholar
  15. 15.
    Smith, M. R., Devine, C. S., Cohn, S. M., and Liebermar, M. W. Quantitative electrophoretic transfer of DNA from polyacrylamide or agarose gels to nitrocellulose. Anal. Biochem. 137:120–124, 1984.PubMedCrossRefGoogle Scholar
  16. 16.
    Kroczek, R. A. and Siebert, E. Optimization of Northern analysis by vacuum blotting, RNA-transfer visualization, and ultraviolet fixation. Anal. Biochem. 184:90–95, 1990.PubMedCrossRefGoogle Scholar
  17. 17.
    Stacey, J. and Isaac, P. G. Restriction enzyme digestion, gel electrophoresis, and vacuum blotting of DNA to nylon membranes. Methods Mol. Biol. 28:25–36, 1994.PubMedGoogle Scholar
  18. 18.
    Olszewska, E. and Jones, K. Vacuum blotting enhances nucleic acid transfer. Trends Genet. 4:92–94, 1988.PubMedCrossRefGoogle Scholar
  19. 19.
    Khandjian, E. W. UV crosslinking of RNA to nylon membrane enhances hybridization signals. Mol. Biol. Rep. 11:107–115, 1986.PubMedCrossRefGoogle Scholar
  20. 20.
    Kornguth, S. E., Anderson J. W., Scott, G., and Kubinski, H. Fractionation of subcellular elements from rat central nervous tissue in a cesium chloride gradient. Exp. Cell Res. 45:656–670, 1967.PubMedCrossRefGoogle Scholar
  21. 21.
    Chomczynski, P. and Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159, 1987.PubMedCrossRefGoogle Scholar
  22. 22.
    Lehrach H., Diamond, D., Wozney, J. M., Boedtker, H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry 16:4743–4749, 1977.PubMedCrossRefGoogle Scholar
  23. 23.
    McMaster, G. K. and Carmichael, G. G. Analysis of single and double-strand nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc. Natl. Acad. Sci. USA 74:4835–4838, 1977.PubMedCrossRefGoogle Scholar
  24. 24.
    Kroczek, R. A. Immediate visualization of blotted RNA in northern analysis. Nucleic Acids Res. 17:9497–9499, 1989.PubMedCrossRefGoogle Scholar
  25. 25.
    Wade, M. F. and O’Conner, J. L. Using a cationic carbocyanine dye to assess RNA loading in northern gel analysis. Biotechniques 12:794–796, 1992.PubMedGoogle Scholar
  26. 26.
    Kaguni, J. and Kaguni, L. S. Enzyme-labelled probes for nucleic acid hybridization. Bioanal. Appl. Enzymes 36:115–127, 1992.Google Scholar
  27. 27.
    Hagel, L. Properties, in theory and practice, of novel gel filtration media for standard liquid chromatography. J. Chromatog. 476:329–344, 1989.CrossRefGoogle Scholar
  28. 28.
    Krieg, P. A. and Melton, D. A. In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol. 155:397–415, 1987.Google Scholar
  29. 29.
    Butler, E. T. and Chamberlin, M. J. Bacteriophage SP6-specifiic RNA polymerase: isolation and characterization. J. Biol. Chem. 257:5772–5778, 1982.PubMedGoogle Scholar
  30. 30.
    Studier, F. W., Rosenberg, A. H., Dunn, J. J., and Dubendorff, J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185:60–89, 1990.PubMedCrossRefGoogle Scholar
  31. 31.
    Yamaguchi, K., Zhang, D., and Byrn, R. A. A modifiied nonradioactive method for northern blot analysis. Anal. Biochem. 218:343–346, 1994.PubMedCrossRefGoogle Scholar
  32. 32.
    Dubitsky, A., Brown, J., and Brandwein, H. Chemiluminescent detection of DNA on nylon membranes. BioFeedback 13:392–399, 1992.Google Scholar
  33. 33.
    Murakami, A., Tada, J., Yamaguchi, K., and Takano, J. Highly sensitive detection of DNA using enzyme-linked DNA probes. Nucleic Acids Res. 17:5587–5595, 1989.PubMedCrossRefGoogle Scholar
  34. 34.
    Nakagami, S., Matsunaga, H., Oka, N., and Yamane, A. Preparation of enzyme-conjugated DNA probe and application to the universal probe system. Anal. Biochem. 198:75- 79, 1991.Google Scholar
  35. 35.
    Schaap, A. P., Akhaven, H., and Romano, L. J. Chemiluminescent substrates for alkaline phosphatase: applications to ultrasenstive enzyme-linked immunoassays and DNA probes. Clin. Chem. 35:1863, 1864, 1989.Google Scholar
  36. 36.
    Ingram, V. M. A specific chemical difference between the globins of normal human and sickle-cell anemia hemoglobin. Nature 178:792–794, 1956.PubMedCrossRefGoogle Scholar
  37. 37.
    Chang, J. G. and Kan Y. W. A sensitive new prenatal test for sickle cell anemia. New Engl. J. Med. 307:30–32, 1982.PubMedCrossRefGoogle Scholar
  38. 38.
    Burkitt, D. and O'Connor, G. T. Malignant lymphoma in African children. A clinical syndrome. Cancer 14:258–269, 1961.Google Scholar
  39. 39.
    Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds. The Metabolic Basis of Inherited Disease, 6th ed., McGraw-Hill, New York, 1989.Google Scholar
  40. 40.
    Fearon, E. R. and Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 6:759- 767, 1990.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Sharon Collins Presnell

There are no affiliations available

Personalised recommendations