Primary Cell Cultures of Peripheral and Central Neurons and Glia

  • Mary I. Johnson
  • Richard P. Bunge

Abstract

Tissue culture allows the separate establishment of neurons and glia under a variety of conditions of substrate and media. By subsequent recombination of relatively pure cell populations, specific questions of neuronal development and neuronal-glia interactions may be studied. In vivo, axons of dorsal root ganglion (DRG) neurons course through both the central nervous system (CNS) and peripheral nerve trunks, and induce myelination by both central (oligodendrocytes) and peripheral (Schwann cells) neuroglia. In culture, either PNS or CNS glial cells can be added to the networks of nonneuronal cell-free disaggregated DRG neurons. When provided with suitable medium, the glia expand in number and myelination occurs in several weeks. Similarly, cultures of sympathetic neurons have been utilized to study factors influencing neurotransmitter and dendritic development as well as axonal growth, particularly the form and function of growth cones. Studies of substrate requirements and molecular interactions underlying neurite extension have utilized expiants of both central and peripheral neurons.

Keywords

Dorsal Root Ganglion Schwann Cell Dorsal Root Ganglion Neuron Maintenance Medium Superior Cervical Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. Bunge, M. B., Johnson, M. I., Ard, M. D., and Kleitman, N. (1987), Factors influencing the growth of regenerating nerve fibers in culture, in: Progress in Brain Research, Seil, F. J., Herbert, E., and Carlson, B. M., eds., Elsevier, vol. 71, pp. 61–74.Google Scholar
  2. Bunge, M. B., Bunge, R. P., Carey, D. J., Cornbrooks, C. J., Eldridge, C. F., Williams, A. K., and Wood, P. M. (1983), Axonal and nonaxonal influences in Schwann cell development, in: Developing and Regenerating Vertebrate Nervous Systems, Coates, P., Markwald, R., Kenny, A., eds., Alan R. Liss, New York, pp. 71–105.Google Scholar
  3. Bunge, R. P. (1986), The cell of Schwann, in Diseases of the Nervous System, Saunders, New York, pp. 153–162.Google Scholar
  4. Bunge, R. P., Bunge, M. B., and Eldridge, C. E. (1985), Linkage between axonal ensheathment and basal lamina production by Schwann cells. Ann. Rev. Neurosci. 9, 305–328.CrossRefGoogle Scholar
  5. Bunge, R. P., Johnson, M., and Ross, C. D. (1978), Nature and nurture in the development of the autonomic neuron. Science 199, 1409–1416.PubMedCrossRefGoogle Scholar
  6. Eldrige, C. F., Cornbrooks, C. J., Chiu, A. Y., Bunge, R. P., and Sanes, J. R. (1986), Basal lamina-associated heparan sulfate proteoglycan in the rat peripheral nervous system: characterization and localization using monoclonal antibodies. J. Neurocytol. 15, 37–51.CrossRefGoogle Scholar
  7. Higgins, D. and Burton, H. (1982), Electrotonic synapses are formed by fetal rat sympathetic neurons maintained in a chemically-defined culture medium. Neuroscience 7, 2241–2253.PubMedCrossRefGoogle Scholar
  8. Johnson, M. I. and Argiro, V. (1983), Techniques for preparation of sympathetic ganglion cultures. Methods Enzymol.103, 334–347.PubMedCrossRefGoogle Scholar
  9. Ratner, N., Bunge, R. P., and Glaser, L. (1985), A neuronal cell surface heparan sulfate proteoglycan is required for dorsal root ganglion neuron stimulation of Schwann cell proliferation. J. Cell Biol. 101,744–754.PubMedCrossRefGoogle Scholar

Specific References And Notes

  1. Argiro, V., Bunge, M. B., and Johnson, M. I. (1984), Correlation between growth cone form and movement and their dependence on neuronal age. J. Neurosci. 4, 3051–3062.PubMedGoogle Scholar
  2. Bornstein, M. B. (1958), Reconstituted rat-tail collagen used as a substrate for tissue cultures on coverslips. Lab. Invest. 7, 134–137.PubMedGoogle Scholar
  3. Bottenstein, J. E. and Sato, G. H. (1979), Growth of a rat neuroblastoma cell line in serum-free supplemented media. Proc. Natl. Acad. Sci. USA 76, 514–517.PubMedCrossRefGoogle Scholar
  4. Bray, D. (1970), Surface movements during the growth of single explanted neurons. Proc. Natl. Acad. Sci. USA 65, 905.PubMedCrossRefGoogle Scholar
  5. Brockes, J. P., Fields, K. L., and Raff, M. C. (1979), Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 165, 105–118.PubMedCrossRefGoogle Scholar
  6. Bruckenstein, D. A. and Higgins, D. (1988), Morphological differentiation of embryonic rat sympathetic neurons in tissue culture. II. Serum promotes dendritic growth. Dev. Biol. 128, 337–348.PubMedCrossRefGoogle Scholar
  7. Bunge, R. P. and Wood, P. (1973), Studies on the transplantation of spinal cord tissue in the rat. I. Development of a culture system for hemisections of embryonic spinal cord. Brain Res. 57, 261–276.PubMedCrossRefGoogle Scholar
  8. Bunge, R. P. and Wood, P. M. (1987), Tissue culture studies of interactions between axons and myelinating cells of the central and peripheral nervous system. Prog. Brain Res. 71, 143–152.PubMedCrossRefGoogle Scholar
  9. Crain, S. (1976), Neurophysiologic Studies in Tissue Culture. Raven Press, New York.Google Scholar
  10. Eagle, H. (1959), Amino acid metabolism in mammalian cell cultures. Science 130, 432–437.PubMedCrossRefGoogle Scholar
  11. Eldridge, C. F., Bunge, M. B., and Bunge, R. P. (1989), Differentiation of axon-related Schwann cells in vitro: II. Control of myelin formation by basal lamina. J. Neurosci. 9, 625–638.PubMedGoogle Scholar
  12. Eldridge, C. F., Bunge, M. B., Bunge, R. P., and Wood, P. M. (1987), Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J. Cell Biol. 105, 1023–1034.PubMedCrossRefGoogle Scholar
  13. Harrison, R. G. (1907), The living developing nerve fiber. Anat. Rec. 1, 116–118.CrossRefGoogle Scholar
  14. Hild, W. (1957), Myelinogenesis in cultures of mammalian central nervous tissue. Z. Zellforsch. 46, 71–95.PubMedCrossRefGoogle Scholar
  15. Iacovitti, L., Johnson, M. I., Joh, T. H., and Bunge, R. P. (1982), Biochemical and morphological characterization of sympathetic neurons grown in chemically defined medium. Neuroscience 7, 2225–2240.PubMedCrossRefGoogle Scholar
  16. Johnson, E. M., Rich, K. M., and Yip, H. K. (1986), The role of NGF in sensory neurons in vivo. TINS 9, 33–37.Google Scholar
  17. Johnson, M. I., Paik, K., and Higgins, D. (1985), Rapid changes in synaptic vesicle cytochemistry after depolarization of cultured cholinergic sympathetic neurons. J. Cell Biol. 101, 217–226.PubMedCrossRefGoogle Scholar
  18. Kleitman, N. and Johnson, M. I. (1989), Rapid growth cone translocation on laminin is supported by lamellipodial not filopodial structures. Cell Motil. Cytoskel. 13, 288–300.CrossRefGoogle Scholar
  19. Kleitman, N., Wood, P., Johnson, M. I., and Bunge, R. P. (1988), Schwann cell surfaces but not extracellular matrix support neurite outgrowth from embryonic rat retina. J. Neurosci. 8, 653–663.PubMedGoogle Scholar
  20. Leibovitz, A. (1963), The growth and maintenance of tissue-cell culture in free gas exchange with the atmosphere. Am. J. Hyg. 78, 173–180.PubMedGoogle Scholar
  21. McCarthy, K. and de Vellis, J. (1980), Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890–902.PubMedCrossRefGoogle Scholar
  22. Meiri, K., Johnson, M. I., and Willard, M. (1988), Distribution and phosphorylation of the growth-associated protein, GAP-43, in regenerating sympathetic neurons in culture. J. Neurosci. 8, 2571–2581.PubMedGoogle Scholar
  23. Murray, M. M. (1965), Nervous tissue in vitro, in: Cells and Tissues in Culture, vol. 2, Wilmer, E. N., ed., Academic, New York, pp. 373–455.Google Scholar
  24. Patterson, P. H. (1978), Environmental determination of autonomic neurotransmitter functions. Ann. Rev. Neurosci. 1, 1–17.PubMedCrossRefGoogle Scholar
  25. Peterson, E. R. and Murray, M. R. (1955), Myelin sheath formation of avian spinal ganglia. Am. J. Anat. 96, 319.PubMedCrossRefGoogle Scholar
  26. Porter, S., Clark, M. B., Glaser, L., and Bunge, R. P. (1986), Schwann cells stimulated to proliferate in the absence of neurons retain full functional capability. J. Neurosci. 6, 3070–3078.PubMedGoogle Scholar
  27. Roufa, D., Bunge, M. B., Johnson, M. I., and Cornbrooks, C. J. (1986), Variation in content and function of non-neuronal cells in the outgrowth of sympathetic ganglia from embryos of differing age. J. Neurosci. 6, 790–802.PubMedGoogle Scholar
  28. Roufa, D. G., Johnson, M. J., and Bunge, M. B. (1983), Influence of ganglion age, nonneuronal cells and substratum on neurite outgrowth in culture. Dev. Biol. 99, 225–239.PubMedCrossRefGoogle Scholar
  29. Tropea, M., Johnson, M. I., and Higgins, D. (1988), Glial cells promote dendritic development in rat sympathetic neurons in vitro. Glia 1, 380–392.CrossRefGoogle Scholar
  30. Wood, P. (1976) Separation of functional Schwann cells and neurons from normal peripheral nerve tissue. Brain Res. 115, 361–375.PubMedCrossRefGoogle Scholar
  31. Wood, P. M. and Bunge, R. P. (1986), Myelination of cultured dorsal root ganglion neurons by oligodendrocytes obtained from adult rats. J. Neurol. Sci. 74, 153–169.PubMedCrossRefGoogle Scholar
  32. Wood, P. M. and Williams, A. K. (1984), Oligodendrocyte proliferation and CNS myelination in cultures containing dissociated embryonic neuroglia and dorsal root ganglion neurons. Dev. Brain Res. 12, 225–241.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Mary I. Johnson
  • Richard P. Bunge

There are no affiliations available

Personalised recommendations