The Sympathoadrenomedullary Response to Critical Illness

  • Otto Kuchel
Part of the Contemporary Endocrinology book series (COE, volume 4)

Abstract

Any illness, particularly a critical one, is a major threat to the integrity of the human organism and endangers its survival. Approximately a century ago, Claude Bernard theorized that the “milieu interne” must be maintained to preserve life. At about the same time, Walter Cannon introduced the term homeostasis to characterize “the coordinated physiological reactions that maintain the steady state of body” via the integrated cooperative activity of a wide range of organs (1). He was the first to recognize that physical and emotional disturbances could elicit sympathoadrenomedullary responses, which are typical of physiological change seen in preparation for “fight or flight.” He also demonstrated that physical and emotional upsets trigger the same responses and that there are limits to the ability to compensate. The cardiovascular, renal, visceral, cutaneous, pulmonary, and metabolic components of these responses may have survival value in preparing the body for action. However, their biochemistry remained unknown even though adrenaline was already discovered through the pioneering work of Abel and Loewi.

Keywords

Vasoactive Intestinal Peptide Adrenal Medulla Plasma Catecholamine Atrial Natriuretic Factor Catecholamine Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cannon WB. The emergency function of the adrenal medulla in pain and the major emotions. Am J Physiol 1914; 33: 356–372.Google Scholar
  2. 2.
    Selye H. The evolution of the stress concept. Am Scientist 1973; 61: 692–699.PubMedGoogle Scholar
  3. 3.
    von Euler US, Gemzell CA, Levi L, Ström G. Cortical and medullary adrenal activity in emotional stress. Acta Endocrinol 1959; 30: 567–573.PubMedGoogle Scholar
  4. 4.
    Axelrod J, Weinshilboum K. Catecholamines. N Engl J Med 1972; 287: 237–242.PubMedCrossRefGoogle Scholar
  5. 5.
    Kopin U. Catecholamines, adrenal hormones, and stress. In: Krieger DT, Hughes JC, eds. Neuroendocrinology. Sunderland, Sinauer, 1980, pp. 159–166.Google Scholar
  6. 6.
    Hökfelt T, Goldstein M, Fuxe K. Characterization and tissue localization of catecholamine synthesizing enzymes. Pharmacol Rev 1972; 24: 293–309.PubMedGoogle Scholar
  7. 7.
    Goldstein DS. Stress, Catecholamines, and Cardiovascular Disease. Oxford University Press, 1995, p. 528.Google Scholar
  8. 8.
    Snider SR, Kuchel O. Dopamine: an important neurohormone of the sympathoadrenal system. Significance of increased peripheral dopamine release for the human stress response and hypertension. Endocr Rev 1983; 4: 291–309.PubMedCrossRefGoogle Scholar
  9. 9.
    Kuchel O. Clinical implications of genetic and acquired defects in catecholamine synthesis and metabolism. Clin Invest Med 1994; 17; 4: 369–388.Google Scholar
  10. 10.
    Strasser RH, Ihl-Vahl R, Marquetant R. Molecular biology of adrenergic receptors. J Hypertens 1992; 10: 501–506.PubMedCrossRefGoogle Scholar
  11. 11.
    Axelrod J, Reisine TD. Stress hormones: their interaction and regulation. Science 1984; 224: 452–459.PubMedCrossRefGoogle Scholar
  12. 12.
    Sternberg EM, Chrousos GP, Wilder RL, Gold PW. The stress response and the regulation of inflammatory disease. NIH Conference. Ann Intern Med 1992; 117: 854–866.PubMedGoogle Scholar
  13. 13.
    Kopin IJ. Definitions of stress and sympathetic neuronal responses. Ann NY Acad Sci 1995; 771: 19–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Goldstein DS, Mezey E, Yamamoto T, Aneman A, Friberg P, Eisenhofer G. Is there a third peripheral catecholaminergic system? Endogenous dopamine as an autocrine/paracrine substance derived from plasma DOPA and inactivated by conjugation. Hypertens Res 1995;18;(Suppl I ): S93 - S99.Google Scholar
  15. 15.
    Kopin IJ, Eisenhofer G, Goldstein D. Adrenergic response following recognition of stress. In: Breznitz S, Zinder O, eds. Molecular Biology of Stress, Liss, New York, 1989, pp. 123–132.Google Scholar
  16. 16.
    Goldstein DS, Eisenhofer G, Garty M, Sax FL, Keiser HR, Kopin IJ. Pharmacologic and tracer methods to study sympathetic function in primary hypertension. Clin Exp Hyper-Theory Pract All 1989; (Suppl I ): 173–189.Google Scholar
  17. 17.
    Lerer B, Ebstein RP. Alterations in cyclic adenosine monophosphate signal amplification as a consequence of chronic stress. In: Progress in catecholamine Research, part C: Clinical Aspects, Liss, New York, 1988, pp. 409–412.Google Scholar
  18. 18.
    Kvetnansky R. Recent progress in catecholamines under stress. In: Usdin E, Kvetnansky R, Kopin IJ, eds. Catecholamines and Stress: Recent Advances, Elsevier, Amsterdam, 1980, pp. 7–18.Google Scholar
  19. 19.
    Schwarzschild MA, Zigmond RE. Secretin and vasoactive intestinal peptide activate tyrosine hydroxylase and sympathetic nerve endings. J Neurosc 1989; 9: 160–166.Google Scholar
  20. 20.
    Hirooka Y, Head GA, Potts PD, Godwin SJ, Bendle RD, Dampney RAL. Medullary neurons activated by angiotensin II in the conscious rabbit. Hypertension 1996; 27: 287–296.PubMedCrossRefGoogle Scholar
  21. 21.
    Sole MJ, Helke CF, Jacobowitz DM. Increased dopamine in the failing hamster heart: transvesicular transport of dopamine limits the rate of norepinephrine synthesis. Am J Cardiol 1982; 49: 1682.PubMedCrossRefGoogle Scholar
  22. 22.
    Schwartz J. The dopaminergic system in the periphery. J Pharmacol 1984; 15: 401–414.PubMedGoogle Scholar
  23. 23.
    Charvat JP, Dell P, Folkow B. Mental factors and cardiovascular diseases. Cardiologia 1964; 44: 124–141.PubMedCrossRefGoogle Scholar
  24. 24.
    Rothschild AJ, Langlais PJ, Schatzberg AF, Walsh FX, Cole JO, Bird ED. Dexamethasone increases plasma free dopamine in man J Psychiat Res 1984; 18: 217–223.Google Scholar
  25. 25.
    Abercrombie ED, Page ME. Stress-induced modification of the locus coeruleus norepinephrine system: functional significance and clinical implications. Sixth symposium on catecholamines and other neurotransmitters in stress. Smolenice, June 19–24, 1995.Google Scholar
  26. 26.
    Togari A, Ichinose H, Matsumoto S, Fugita K, Nagatsu T. Multiple mRNA forms of human GTP cyclohydrolase 1. Biochem Biophys Res Commun 1992; 187: 359–365.PubMedCrossRefGoogle Scholar
  27. 27.
    Ichinose H, Ohye T, Takahashi E, Seki N, Hori T, Segawa M, Nomura Y, Endo K, Tonaka H, Tsuji S. Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nature Gene 1994; 8: 236–242.CrossRefGoogle Scholar
  28. 28.
    Craviso GL, Hemelt VB, Waymire JC, Moore R. Stress-induced alterations in tyrosine hydroxylase gene expression in adrenal medullary chromaffin cells may involve both transcriptional and post-transcriptional mechanisms. Sixth symposium on catecholamines and other neurotransmitters in stress. Smolenice June 19–24, 1995.Google Scholar
  29. 29.
    Lewis EJ, Zellmer E, Shang Z. Genetic regulatory elements of the dopamine (3-hydroxylase gene. Sixth Symposium on catecholamines and other neurotransmitters in stress. Smolenice June 19–24, 1995.Google Scholar
  30. 30.
    Parker Jones P, Spraul M, Matt KS, Seals DR, Skinner JS, Ravussin E. Gender does not influence sympathetic neural reactivity to stress in healthy humans. Am J Physiol 1996; 270: H350 - H357.Google Scholar
  31. 31.
    Mills PJ, Nelesen RA, Ziegler MG, Parry BL, Berry CC, Dillon E, Dimsdale JE. Menstrual cycle effects on catecholamine and cardiovascular responses to acute stress in black but not white normotensive women. Hypertension 1996; 27: 962–967.PubMedCrossRefGoogle Scholar
  32. 32.
    Kuchel O, Kuchel G. Circulating catecholamines and aging. In: Amenta F, ed. Aging of the Autonomic Nervous System. CRC, Boca Raton, FL, 1993, pp. 71–93.Google Scholar
  33. 33.
    Robertson D, Johnson GA, Robertson RM, Nies AS, Shand DG, Oates JA. Comparative assessment of stimuli that release neuronal and adrenomedullary catecholamines in man. Circulation 1979; 59: 637–643.PubMedCrossRefGoogle Scholar
  34. 34.
    Woolf PD, Akowuah ES, Lee L, Kelly M, Feibel J. Evaluation of the dopamine response to stress in man. J Clin Endocrinol Metab 1983; 56: 246–250.PubMedCrossRefGoogle Scholar
  35. 35.
    Tidgren B, Hjemdahl P Renal responses to mental stress and epinephrine in humans. Am J Physiol 1989; 257: F682 - F689.PubMedGoogle Scholar
  36. 36.
    Padbury JF, Martinez AM, Thio SL, Burnett E. Integrated neuroendocrine stress responses in fetal sheep. In: Breznitz S, Zinder O, eds. Progress in Catecholamine Research, part C: Clinical Aspects. Liss, New York, 1989, pp. 469–474.Google Scholar
  37. 37.
    Rhee HM, Hendrix DW. Effects of stress intensity and modality on cardiovascular system: An involvement of opioid systen. In: Breznitz S, Zinder O, eds. Molecular Biology of Stress. Liss, New York, 1989, pp. 87–96.Google Scholar
  38. 38.
    Horky K, Gutkowska J, Garcia R, Thibault G, Genest J, Cantin M. Effect of different anesthetics on immunoreactive atrial natriuretic factor concentration in rat plasma. Biochem Biophys Res Commun 1985; 129: 651–657.PubMedCrossRefGoogle Scholar
  39. 39.
    Debinski W, Kuchel O, Buu NT. Atrial natriuretic factor is a new neuromodulatory peptide. Neuroscience 1990; 36: 15–20.PubMedCrossRefGoogle Scholar
  40. 40.
    Debinski W, Kuchel O, Buu NT, Cantin M, Genest J. Atrial natriuretic factor partially inhibits the stimulated catecholamine synthesis in superior cervical ganglia of the rat. Neurosci Lett 1987; 77: 92–96.PubMedCrossRefGoogle Scholar
  41. 41.
    Zukowska-Grojec Z, Lewandowski J, Pruszczyk P, Wocial B, Sabban E. Neuropeptide Y: a major regulator of cardiovascular responses to stress. Sixth symposium on catecholamines and other neurotransmitters in stress. Smolenice June 19–24, 1995.Google Scholar
  42. 42.
    Zukowska-Grojec Z. Neuropeptide Y. A novel sympathetic stress hormone and more. Ann NY Acad Sci 1995; 771: 219–233.PubMedCrossRefGoogle Scholar
  43. 43.
    Takiyyuddin MA, Parmer RJ, Kailasam MT, Cervenka JH, Kennedy B, Ziegler MG, Lin MC, Li J, Grim CE, Wright FA, O’Connor DT. Chromogranin A in human hypertension. Influence of heredity. Hypertension 1995; 26: 213–220.PubMedCrossRefGoogle Scholar
  44. 44.
    Moftaquir-Handaj A, Barbe F, Barbarino-Monnier P, Aunis D, Boutroy MJ. Circulating chromogranin A and catecholamines in human fetuses at uneventful birth. Pediatr Res 1995; 37 (1): 101–105.PubMedCrossRefGoogle Scholar
  45. 45.
    Tanaka M, Kitaimura K, Ishizaka Y, Ishiyama Y, Kato J, Kangawa K, Eto T. Plasma adrenomedullin in various diseases and exercise-induced change in adrenomedullin in healthy subjects. Intern Med 1995; 34 (8): 728–733.PubMedCrossRefGoogle Scholar
  46. 46.
    Livett BTG, Zhou XF, Khalil Z, Wan DCC, Bunn SJ, Marley PD. Endogenous neuropeptides maintain adrenal catecholamine output during stress. In: Breznitz S, Zinder O, eds. Molecular Biology of Stress. Liss, New York, 1989, pp. 179–190.Google Scholar
  47. 47.
    Kvetnansky R, Pacak K, Nankova B, Fukuhara K, Goldstein D, Sabban EL, Kopin U. Peripheral catecholamine synthesis, release and metabolism during stress: effect of glucocorticoids. Sixth symposium on catecholamines and other neurotransmitters in stress, Smolenice June 19–24, 1995.Google Scholar
  48. 48.
    Wong DL, Morita K. Glucocorticoid control of phenylethanolamine N-methyltransferase gene expression: implications for stress and disorders of the stress axis. Sixth symposium on catecholamines and other neurotransmitters in stress, Smolenice June 19–24, 1995.Google Scholar
  49. 49.
    Makino S, Smith MA, Gold PW. Decreased capacity of glucocorticoids to inhibit locus coeruleus-HPA axis responsiveness during repeated stress. Sixth symposium on catecholamines and other neurotransmitters in stress, Smolenice June 19–24, 1995.Google Scholar
  50. 50.
    Goto A, Yamada K, Nagoshi H, Terano Y, Omata M. Stress-induced elevation of ouabainlike compound in rat plasma and adrenal. Hypertension 1995; 2: 1173–1176.CrossRefGoogle Scholar
  51. 51.
    Premel-Cabic A, Gétin F, Turcant A, Rohmer V, Bigorgne JC, Allain P. Noradrénaline plasmatique dans l’hyperthyroïdie et l’hypothyroïdie. La Presse Médicale 1986; 15: 1625–1627.PubMedGoogle Scholar
  52. 52.
    Kuchel O, Buu NT, Hamet P, Larochelle P. Hypertension in hyperthyroidism: is there an epinephrine connection? Life Sci 1982; 30: 603–609.PubMedCrossRefGoogle Scholar
  53. 53.
    Hjemdahl P. Plasma catecholamines-analytical challenges and physiological limitations. Baillière’s Clin Endocrinol Metab 1993; 7: 307–353.PubMedCrossRefGoogle Scholar
  54. 54.
    Zinder O, Greenberg A, Maer H, Hiram Y, Nir A. The adrenal medulla secretory response to stress. In: Breznitz S, Zinder O, eds. Molecular Biology of Stress. Liss, New York, 1989, pp. 167–178.Google Scholar
  55. 55.
    Slotkin TA, Seidler FJ. Catecholamines and stress in the newborn. In: Breznitz S, Zinder O, eds. Molecular Biology of Stress. Liss, New York, 1989, pp. 133–142.Google Scholar
  56. 56.
    Mills DE, Huang YS, Narce M, Poisson JP. Psychosocial stress, catecholamines and essential fatty acid metabolism in rats. PSEBM 1994; 205: 56–61.Google Scholar
  57. 57.
    Kvetnansky R, Torda T. Changes of heart catecholamine levels, metabolism and adrenergic receptors in acutely and repeatedly stressed rats. In: Jacob R, Gulch RW, Kissling G, eds. Cardiac Adaptation to Hemodynamic Overload, Training and Stress. 1983, pp. 265–266.Google Scholar
  58. 58.
    Krahenbuhl GS, Harris J. Biochemical measurements of the human stress response. Air Force Systems Command Technical Report AFHRL-TR-83–40. Brooks Air Force Base, Air Force Systems Command 40–46, 1984.Google Scholar
  59. 59.
    Szekeres L. On the mechanism and possible therapeutic application of delayed cardiac adaptation to stress. Can J Cardiol 1996; 12: 177–185.PubMedGoogle Scholar
  60. 60.
    LeBlanc J. The role of catecholamines in adaptation to chronic and acute stress. In: Usdin E, Kvetnansky R, Kopin IJ, eds. Catecholamines and Stress. International Symposium on Catecholamines and Stress, Bratislava, 1976, pp. 409–417.Google Scholar
  61. Harris J, Krahenbuhl GS. Biogenic amine/metabolite patterns of stress response in normal subjects: implications in psychiatric disorders. Prog Catecholamine Res Part C: Clin Aspects, 1988;243–248.Google Scholar
  62. 62.
    Sothmann MS, Horn TS, Hart BA, Gustafson AB. Comparison of discrete cardiovascular fitness groups on plasma catecholamine and selected behavioral responses to psychological stress. Psychophysiology 1987; 24–47.Google Scholar
  63. 63.
    Premel-Cabic A, Turcant A, Chaleil D, Allain P, Victor J, Tadei A. Concentration plasmatique de catécholamines â l’effort chez le sujet non entraîné et chez le sportif. Path Biol 1984; 32: 702–704.Google Scholar
  64. 64.
    Hashimoto K, Aizawa Y, Mori K. Changes in blood pressure, body weight and urinary catecholamines during austerities. Eur J Appl Physiol 1987; 56: 38–42.CrossRefGoogle Scholar
  65. 65.
    Ibsen H, Julius S. Pharmacologic tools for assessment of adrenergic nerve activity in human hypertension. Fed Proc 1984; 43: 67–71.PubMedGoogle Scholar
  66. 66.
    Parfrey PS, Wright P, Ledingham JM. Effect of inheritance and stress on the diurnal excretion of sodium and potassium in young people with and without a family history of hypertension. Clin Sci 1980; 59: 161s - 164s.PubMedGoogle Scholar
  67. 67.
    Goldstein DS. Clinical assessment of sympathetic responses to stress. Ann NY Acad Sci 1995; 771: 570–593.PubMedCrossRefGoogle Scholar
  68. 68.
    Esler M, Jennings G, Leonard P, Sacharias N, Burke F, Johns J, Blombery P. Contribution of individual organs to total noradrenaline release in humans. Acta Physiol Scand 1984; 527: 11–16.Google Scholar
  69. 69.
    Folkow B. Nervous integration of cardiovascular function. Proc R Soc Med 1968; 61: 1317–1318.PubMedGoogle Scholar
  70. 70.
    Esler M, Lambert G, Jennings G. Regional Norepinephrine turnover in human hypertension. Clin Exp Hypertension-Theory Pract 1989; A11: 75–89.CrossRefGoogle Scholar
  71. 71.
    Lenders JWM, Willemsen JJ, Boo T, Lemmens WAJ, Thien T. Disparate effects of mental stress on plasma noradrenaline in young normotensive and hypertensive subjects. J Hypertens 1989; 7: 317–323.PubMedCrossRefGoogle Scholar
  72. 72.
    Goldstein DS, Eisenhofer G, Garty M, Sax FL, Keiser HR, Kopin IJ. Pharmacologic and tracer methods to study sympathetic function in primary hypertension. Clin Exp Hypertension-Theory Pract 1989; A 1 1: 173–189.Google Scholar
  73. 73.
    Eisenhofer G, Friberg P, Pacak K, Goldstein DS, Murphy DL, Tsigos C, Quyyumi AA, runner HG, Lenders JW. Plasma metadrenalines: do they provide useful information about sympatho-adrenal function and catecholamine metabolism? Clin Sci 1995; 88 (5): 533–542.PubMedGoogle Scholar
  74. 74.
    Unger T, Buu NT, Kuchel O. Renal handling of free and conjugated catecholamines following surgical stress in the dog. Am J Physiol 1978; 235: F542 - F547.PubMedGoogle Scholar
  75. 75.
    Joyce DA, Beilin IJ, Vandongen R, Davidson I. Plasma free and sulfate conjugated catecholamines during acute physiological stimulation in man Life Sci 1982; 30: 447–454.Google Scholar
  76. 76.
    Minatoguchi S, Ito H, Suzuki T, Koshiji M, Kakami M, Uno Y, Asano K, Yamashita K, Hirakawa S, Fujiwara H. Conversion of plasma noradrenaline from conjugated form into free form in the heart and its physiological significance in patients with cardiac diseases-a comaprison between at rest and during exercise. Biogenic Amines 1995; 22: 417–432.Google Scholar
  77. 77.
    Kuchel O, Buu NT, Hamet P, Larochelle P, Bourque M, Genest J. Essential hypertension with low conjugated catecholamines imitates pheochromocytoma. Hypertension 1981; 3: 347–355.PubMedCrossRefGoogle Scholar
  78. 78.
    Maus TP, Anderson RJ, Weinshilboum RM. effect of dexamethasone on rat phenol-sulfotransferase (PST) activity. Pharmacologist 1980; 22: 301.Google Scholar
  79. 79.
    Claustre J, Debinski W, Buu NT, Savard C, Peyrin L, Kuchel O. Catecholamine conjugates as potential precursors for free amines. Metabolic fate of DA glucoronide in the rat. In: Van Loon GR, Kvetnansky R, McCarty R, Axelrod J, eds. Stress: Neurochemical and Humoral Mechanisms. Gordon and Breach, New York, 1989, pp. 713–720.Google Scholar
  80. 80.
    Cryer PE. Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N Engl J Med 1980; 303: 436–444.PubMedCrossRefGoogle Scholar
  81. 81.
    Chamberlain KG, Pestell RG, Best JD. Platelet catecholamine contents are cumulative indexes of sympathoadrenal activity. Am J Physiol 1990; 259: E141 - E147.PubMedGoogle Scholar
  82. 82.
    O’Connor DT, Bernstein KN. Radioimmunoassay of chromogranin A in plasma as a measure of exocytotic sympathoadrenal activity in normal subjects and patients with pheochromocytoma. New Engl J Med 1984; 311 (12): 764–770.PubMedCrossRefGoogle Scholar
  83. 83.
    Wallin BG. Relationship between sympathetic nerve traffic and plasma concentrations of noradrenaline in man. Pharmacol Toxicol 1988;(Suppl 1 ): 9–11.Google Scholar
  84. 84.
    Wallin BG. Human sympathetic nerve activity and blood pressure regulation. Clin Exp Hypertension-Theory Pract All 1989;(Suppl 1 ): 91–101.Google Scholar
  85. 85.
    Hoffman RP, Sinkey CA, Anderson EA. Hypoglycemia increases muscle sympathetic nerve activity in IDDM and control subjects. Diabetes Care 1994; 17 (7): 673–680.PubMedCrossRefGoogle Scholar
  86. 86.
    Slotkin TA, Seidler FJ. Adrenomedullary catecholamine release in the fetus and newborn: secretory mechanisms and their role in stress and survival. J Dev Physiol 1988; 10 (1): 1–16.PubMedGoogle Scholar
  87. 87.
    Christensen NJ, Schultz-Larsen K. Resting venous plasma adrenalin in 70-year-old men correlated positively to survival in a population study: the significance of the physical working capacity. J Intern Med 1994; 235: 229–232.PubMedCrossRefGoogle Scholar
  88. 88.
    McCarty R, Mabry TR, Foster TC, Gold PE. Sixth symposium on catecholamines and other neurotransmitters in stress. Smolenice June 19–24, 1995.Google Scholar
  89. 89.
    Felig P, Cherif A, Minagawa A, Wahrem J. Hypoglycemia during prolonged exercise in normal men. N Engl J Med 1982;306–895–900.Google Scholar
  90. 90.
    Wortsman J, Frank S, Cryer PE. Adrenomedullary response to maximal stress in humans Am J Med 1984; 77: 779–84.Google Scholar
  91. 91.
    Tarnoky K, Nagy S. Relationship to survival of catecholamine levels and dopamine-f3-hydroxylase activity in experimental haemorrhagic schock. Acta Physiologica Hungarica 1983; 61: 59–68.PubMedGoogle Scholar
  92. 92.
    McCance AJ, Forfar JC. Myocardial ischaemia and ventricular arrhythmias precipitated by physiological concentrations of adrenaline in patients with coronary heart disease. B. Heart J 1991; 66: 316–319.CrossRefGoogle Scholar
  93. 93.
    Goldstein DS. Stress, catecholamines and cardiovascular disease. Sixth symposium on catecholamines and other neurotransmiters in stress, Smolenice June 19–24, 1995.Google Scholar
  94. 94.
    Kaye DM, Lefkovits J, Cox H, Lambert G, Jennings G, Turner A, Esler MD. Regional epinephrine kinetics in human heart failure-evident for extra-adrenal, nonneural release. Am J Physiol-Heart Circ. Physiol 1995; 38: H182 - H188.Google Scholar
  95. 95.
    Yoshizumi M, Nakaya Y, Hibino T, Nomura M, Minakuchi K, Kitagawa T, Katoh I, Ohuchi T, Oka M. Changes in plasma free and sulfoconjugated catecholamines before and after acute physical exercise: experimental and clinical studies. Life Sci 1992; 51: 227–234.PubMedCrossRefGoogle Scholar
  96. 96.
    Lehmann M, Ruhle K, Schmid P, Klein H, Matthys K, Keul J. Hemodynamics, plasma catecholamine behavior and beta-adrenergic receptor density in trained and untrained subjects and cardiac insufficiency patients. Zeitschrift für Kardiologie 1983; 72: 529–536.PubMedGoogle Scholar
  97. 97.
    Sherwood A, Hinderliter AL, Light KC. Physiological Determinants of hyperreactivity to stress in borderline hypertension. Hypertension 1995; 25: 384–390.PubMedCrossRefGoogle Scholar
  98. 98.
    Pickering TC. Does psychological stress contribute to the development of hypertension and coronary heart disease? Eur J Clin Pharmacol 1990; 39: 51–57.CrossRefGoogle Scholar
  99. 99.
    Rostrup M, Mundal HH, Westheim A, Eide I. Awareness of high blood pressure increases arterial plasma catecholamines, platelet noradrenaline and adrenergic responses to mental stress. J Hypertens 1991; 9: 159–166.PubMedCrossRefGoogle Scholar
  100. 100.
    Evens R. Octopamine: from metabolic mistake to modulator. Trends Neural Sci 1978; 12: 154–157.CrossRefGoogle Scholar
  101. 101.
    Kuchel O, Racz K. Dopamine in the adrenal medulla and its possible role in stress. In: Amenta F, ed. Peripheral Dopamine Pathophysiology. CRC, Boca Raton, FL, 1990, pp. 185–202.Google Scholar
  102. 102.
    Eisenhofer G, Brush JE, Cannon RO III, Kopin IJ, Goldstein D. Plasma dihydroxyphenylalanine and total body and regional noradrenergic activity in humans. J Clin Endocrinol Metab 1989; 68: 247–255.PubMedCrossRefGoogle Scholar
  103. 103.
    Kuchel O, Buu NT, Larochelle P, Hamet P, Genest Jr J. Episodic dopamine discharge in paroxysmal hypertension. Page’s syndrome revisited. Arch Intern Med 1986; 146: 1315–1320.PubMedCrossRefGoogle Scholar
  104. 104.
    Ludwig DA, Convertino VA. Predicting orthostatic intolerance: physics or physiology? Aviat Space Environ Med 1994; 65: 404–411.PubMedGoogle Scholar
  105. 105.
    Mazzeo RS, Brooks GA, Butterfield GE, Podolin DA. Wolfel EE, Reeves JT. Acclimatization to high altitude increase muscle sympathetic activity both at rest and during exercise. Am J Physiol 1995; 269: R201 - R207.PubMedGoogle Scholar
  106. 106.
    Duncan JJ, Farr JE, Upton SJ, Hagan RD, Oglesby ME, Blair SN. The effects of aerobic exercise on plasma catecholamines and blood pressure in patients with mild essential hypertension. JAMA 1985;254–2609–2613.Google Scholar
  107. 107.
    Gilbert IA, Lenner KA, McFadden ER Jr. Sympathoadrenal response to repetitive exercise in normal and asthmatic subjects. J Appl Physiol 1988; 64: 2667–2674.PubMedGoogle Scholar
  108. 108.
    Rattarasarn C, Dagogo-Jack S, Zachwieja JJ, Cryer PE. Hypoglycemia-induced autonomic failure in IDDM is specific for stimulus of hypoglycemia and is not attributable to prior autonomic activation. Diabetes 1994; 43: 809–818.PubMedCrossRefGoogle Scholar
  109. 109.
    Hoffman RP, Arslanian S, Drash AL, Becker DJ. Impaired counterregulatory hormone responses to hypoglycemia in children and adolescents with new onset IDDM. J Pediatr Endocrinol 1994; 7: 235–244.PubMedGoogle Scholar
  110. 110.
    Diamond MP, Reece EA, Caprio S, Jones TW, Amiel S, DeGennaro N, Laudano A, Addabbo M, Sherwin RS, Tamborlane WV. Impairment of counterregulatory hormone responses to hypoglycemia in pregnant women with insulin-dependent diabetes mellitus. Am J Obstet Gyn 1992; 166: 70–77.Google Scholar
  111. 111.
    Moan A, Hoieggen A, Nordby G, Os I, Eide I, Kjeldsen SE. Mental stress increases glucose uptake during hyperinsulinemia: associations with sympathetic and cardiovascular responsiveness. Metabolism 1995; 44: 1303–1307.PubMedCrossRefGoogle Scholar
  112. 112.
    Burker EJ, Fredrikson M, Rifai N, Siegel W, Blumenthal JA. Serum lipids, neuroendocrine, and cardiovascular responses to stress in men and women with mild hypertension. Behav Med 1994; 19: 155–161.PubMedCrossRefGoogle Scholar
  113. 113.
    Young JB, Macdonald IA. Sympathoadrenal activity in human obesity: heterogeneity of findings since 1980. Int J Obes Related Metab Disord 1992; 16: 959–967.Google Scholar
  114. 114.
    Gustafson AB, Farwell PA, Kalkhoff RK. Impaired plasma catecholamine response to submaximal treadmill exercise in obese women. Metabolism: Clin Exp 1990; 39: 410–417.CrossRefGoogle Scholar
  115. 115.
    Newsholme EA. A possible metabolic basis for the control of body weight. New Engl J Med 1980; 302: 400–404.PubMedCrossRefGoogle Scholar
  116. 116.
    Kitamura H, Kinugawa T, Miyakoda H, Ogino K, Tomokuni A, Saito M, Hasegawa J, Kotake H, Mashiba H. Cardiac and plasma catecholamine response to dynamic exercise in hyperthyroidism. J Cardiol 1992; 22: 219–225.PubMedGoogle Scholar
  117. 117.
    Robertson D, Hollister AS, Biaggioni I, Netterville JL, Mossqueda-Garcia R, Robertson RM. The diagnosis and treatment of baroreflex failure. N Engl J Med 1993; 329: 1449–1455.PubMedCrossRefGoogle Scholar
  118. 118.
    Kuchel O, Cusson JR, Larochelle P, Buu NT, Genest J. Posture-and emotion-induced severe hypertensive paroxysms with baroreceptor dysfunction. J Hypertens 1987; 5: 277–283.PubMedCrossRefGoogle Scholar
  119. 119.
    Mathias CJ, Christensen NJ, Frankel HL, Spalding JM. Cardiovascular control in recently injured tetraplegics in spinal shock. Quart J Med 1979; 48: 273–287.PubMedGoogle Scholar
  120. 120.
    Polinsky RJ, Brown RT, Curras MT, Baser SM, Baucom CE, Hooper DR, Marini AM. Central and peripheral effects of arecoline in patients with autonomic failure. J Neurol, Neurosurg Psychiatry 1991; 54: 807–812.CrossRefGoogle Scholar
  121. 121.
    Durrieu G, Senard JM, Rascol O, Tran MA, Lataste X, Rascol A, Montastruc JL. Blood pressure and plasma catecholamines in never-treated parkinsonian patients: effect of a selective D1 agonist (CY 208–243). Neurology 1990; 40: 707–709.PubMedCrossRefGoogle Scholar
  122. 122.
    Sra JS, Murthy V, Natale A, Jazayeri MR, Dhala A, Deshpande S, Sheth M, Akhtar M. Circulatory and catecholamine changes during head-up tilt testing in neurocardiogenic (vasovagal) syncope. Am J Cardiol 1994; 73: 33–37.PubMedCrossRefGoogle Scholar
  123. 123.
    Moss J, Donlon JV, McGoldrick KE, Lichtor JL. Perioperative anxiety: difference in the adrenergic responses to local and general anesthesia. In: Progress in Catecholamine Research, part C. Clinical Aspects. Liss, New York, 1988, 469–474.Google Scholar
  124. 124.
    Stein MB, Asmundson GJ. Autonomic function in panic disorder: cardiorespiratory and plasma catecholamine responsivity to multiple challenges of the autonomic nervous system. Biol Psychiatry 1994; 36: 548–558.PubMedCrossRefGoogle Scholar
  125. 125.
    Osterweis M, Solomon F, Green F. Bereavement reactions, consequences and care. National Academy Press, Washington, DC, 1984.Google Scholar
  126. 126.
    Irwin M. Stress-induced immune suppression. Role of the autonomic nervous system. Ann NY Acad Sci 1993; 697: 203–218.PubMedCrossRefGoogle Scholar
  127. 127.
    Gold PW, Goodwin FK, Chrousos GP. Clinical and biochemical manifestations of depression: relation to the neurobiology of stress. N Engl J Med 1988; 319: 413–420.PubMedCrossRefGoogle Scholar
  128. 128.
    Brady LS, Whitfield HJ Jr, Fox RJ, Gold PW, Herkenham M. Long term antidepressant administration alters corticotropin-releasing hormone, tyrosine hydroxylase and mineralocorticoid receptor gene expression in the brain. J Clin Invest 1991; 87: 831–837.PubMedCrossRefGoogle Scholar
  129. 129.
    Jurankova E, Jezova D, Vigas M. Central stimulation of hormone release and the proliferative response of lymphocytes in humans Mol Chem Neuropathol 1995; 25: 213–223.Google Scholar
  130. 130.
    Landmann RM, Muller FB, Perini C, Wesp M, Erne P, Buhler FR. Changes of immunoregulatory cells induced by psychological and physical stress: relationship to plasma catecholamines. Clin Exp Immunol 1984; 58: 127–135.PubMedGoogle Scholar
  131. 131.
    McRitchie DI, Girotti MJ, Rotstein OD, Teodorczyk-Injeyan JA. Impaired antibody production in blunt trauma: Possible role for T cell dysfunction. Arch Surg 1990; 125: 91–96.PubMedCrossRefGoogle Scholar
  132. 132.
    Van den Berghe G, de Zegher F, Wouters P, Schetz M, Verwaest C, Ferdinande P, Lauwers P. Dehydroepiandrosterone sulphate in critical illness: effect of dopamine. Clin Endocrinol 1995; 43: 457–463.CrossRefGoogle Scholar
  133. 133.
    Cohen S, Tyrell DA, Smith AP. Psychological stress and susceptibility to the common cold. N Engl J Med 1991; 325: 606–612.PubMedCrossRefGoogle Scholar
  134. 134.
    Halter JB, Pflug AE, Porte D. Mechanism of plasma catecholamine increases during surgical stress in man. J Clin Endocrinol Metal 1977; 45: 936–944.CrossRefGoogle Scholar
  135. 135.
    Goldstein DS, Dionne R, Sweet J, Gracely R, Brewer BH, Gregg R, Keiser HR. Circulatory, plasma catecholamine, cortisol, lipid, and psychological responses to a real-life stress (third molar extractions): effects of diazepam sedation and of inclusion of epinephrine with the local anesthetic. Psychosom Med 1982; 44: 259–272.PubMedGoogle Scholar
  136. 136.
    Madsen SN, Fog-Moller F, Christiansen C, Vester-Andersen T, Engquist A. Cyclic AMP, adrenaline and noradrenaline in plasma during surgery. Br J Surg 1978; 65: 191–193.PubMedCrossRefGoogle Scholar
  137. 137.
    Halter JB, Pflug AE. Relationship of impaired insulin secretion during surgical stress to anesthesia and catecholamine release. J Clin Endocrinol Met 1980; 51: 1093–1098.CrossRefGoogle Scholar
  138. 138.
    Muller JE, Verrier RL. Triggering of sudden death-lessons from an earthquake. N Engl J Med 1996; 334: 460–461.PubMedCrossRefGoogle Scholar
  139. 139.
    Schwartz PJ, La Rovere MT, Vanoli E. Autonomic nervous system and sudden cardiac death: experimental basis and clinical observation for post myocardial risk stratification. Circulation 1992;85:I-77-I-79.Google Scholar
  140. 140.
    Verrier RL, Dickerson LW. Autonomic nervous system and coronary blood flow changes related to emotional activation and sleep. Circulation 1991;83:II-81-II-89.Google Scholar
  141. 141.
    Kjeldsen SE, Eide I, Aakesson I, Oian P, Maltau JM, Lande K, Gjesdal K. Increased arterial adrenaline is highly correlated to blood pressure and in vivo platelet function in pre-eclampsia. J Hypertens 1985; 3: S93 - S95.Google Scholar
  142. 142.
    Kario K, Matsuo T, Shimada K. Follow-up of white-coat hypertension in the Hanshin-Awaji earthquake. Lancet 1996; 347: 626–627.PubMedCrossRefGoogle Scholar
  143. 143.
    Wilmore DW, Long JM, Masson AD Jr, Sheen RW, Pruitt BA Jr. Catecholamines: mediator of the hypermetabolic response to thermal injury. Ann Surg 1974; 180: 653–669.PubMedCrossRefGoogle Scholar
  144. 144.
    Adams HA, Hempelmann G The endocrine stress reaction in anesthesia and surgery-origin and significance. Anasthesiologie, Intensivmedizin, Notfallmedizin, Schmerztherapie 1991; 26: 294–305.Google Scholar
  145. 145.
    Lavies NG, Meiklejohn BH, May AE, Achola KJ, Fell D. Hypertensive and catecholamine response to tracheal intubation in patients with pregnancy-induced hypertension. Br J Anaesth 1989; 63: 429–434.PubMedCrossRefGoogle Scholar
  146. 146.
    Wortsman J, Paradis NA, Martin GB, Rivers EP, Goetting MG, Nowak RM, Cryer PE. Functional responses to extremely high plasma epinephrine concentrations in cardiac arrest. Crit Care Med 1993; 21: 692–697.PubMedCrossRefGoogle Scholar
  147. 147.
    Gattinoni L, Brazzi L, Peolsi P. A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med 1995; 333: 1025–1032.PubMedCrossRefGoogle Scholar
  148. 148.
    Fitzgerald RD, Dechtyar I, Templ E, Fridrich P, Lackner FX. Cardiovascular and catecholamine response to surgery in brain-dead organ donors. Anaesthesia 1995; 50: 388–392.PubMedCrossRefGoogle Scholar
  149. 149.
    Chang CY, Yeh TC, Chiu HC, Huang JH, Lin CI. Electromechanical effects of caffeine in failing human ventricular myocardium. Int J Cardiol 1995; 50: 43–50.PubMedCrossRefGoogle Scholar
  150. 150.
    Prasad BM, Sorg BA, Ulibarri C, Kalivas PW. Sensitization to stress and psychostimulants. Ann NY Acad Sci 1995; 771: 617–625.PubMedCrossRefGoogle Scholar
  151. 151.
    Mizutani R, Nakano K. Effect of vitamin A depletion on stress-induced change in urinary output of catecholamines. J Nutr 1982; 112: 2205–2211.PubMedGoogle Scholar
  152. 152.
    Levine M, Hartzell W, Dhriwal K, Washko P, Bergsten P. Ascorbic acid regulation of norepinephrine biosynthesis in situ. In: Breznitz S, Zinder O, eds. Molecular Biology of Stress, vol 97. Liss, New York, 1989, pp. 191–201.Google Scholar
  153. 153.
    Paulose CS, Dakshinamurti K, Packer S, Stephens NL. Sympathetic stimulation and hypertension in the pyridoxine-deficient adult rat. Hypertension 1988; 11: 387–391.PubMedCrossRefGoogle Scholar
  154. 154.
    Reaven GM, Lithell H, Landsberg L. Hypertension and associated metabolic abnormalities-the role of insulin resistance and the sympathoadrenal system. N Engl J Med 1996; 334: 374–381.PubMedCrossRefGoogle Scholar
  155. 155.
    Abboud FM. Relaxation, autonomic control and hypertension. N Engl J Med 1976; 294: 107–109.CrossRefGoogle Scholar
  156. 156.
    Michaels RR, Huber MJ, McCann DS. Evaluation of transcendental meditation as a method of reducing stress. Science 1976; 192: 1242–1244.PubMedCrossRefGoogle Scholar
  157. 157.
    Mockel M, Stork T, Vollert J, Rocker L, Danne O, Hochrein H, Eichstadt H, Frei U. Stress reduction through listening to music: effects on stress hormones, hemodynamics and mental state in patients with arterial hypertension and in healthy persons. Deutsche Medizinische Wochenschrift 1995; 120: 745–752.PubMedCrossRefGoogle Scholar
  158. 158.
    Taggart P, Carruthers M. Behaviour patterns and emotional stress in the etiology of coronary heart disease: Cardiological and biochemical correlates. In: Wheastley D, ed. Stress and the Heart. Raven, New York, 1981, pp. 25–37.Google Scholar
  159. 159.
    Epple A, Nibbio B, Horak P, Specter S, Dores RM. Codeine, morphine and met-enkephalin: endogenous regulators of catecholamine release. Sixth Symposium on catecholamines and other neurotransmiters in stress, Smolenice June 19–24, 1995.Google Scholar
  160. 160.
    Breier A, Davis O, Buchanan R, Listwak SJ, Holmes C, Pickar D, Goldstein DS. Effects of alprazolam on pituitary-adrenal and catecholaminergic responses to metabolic stress in humans. Biol Psychiatry 1992; 32: 80–890.CrossRefGoogle Scholar
  161. 161.
    Stratton JR, Halter JB. Effect of a benzodiazepine (alprazolam) on plasma epinephrine and norepinephrine levels during exercise stress. Am J Cardiol 1985; 56: 136–139.PubMedCrossRefGoogle Scholar
  162. 162.
    Puybasset L, Lacolley P, Laurent S, Mignon F, Billaud E, Cuche J-L, Comoy E, Safar M. Effects of clonidine on plasma catecholamines and neuropeptide Y in hypertensive patients at rest and during stress. J Cardiovasc Pharmacol 1993; 21: 912–919.PubMedCrossRefGoogle Scholar
  163. 163.
    Manolis AJ, Olympios C, Sifaki M, Handanis S, Bresnahan M, Gavras I, Gavras H. Suppressing sympathetic activation in congestive heart failure-a new therapeutic strategy. Hypertension 1995; 26: 719–724.PubMedCrossRefGoogle Scholar
  164. 164.
    Greenwood DT, Murray RJ. Stress-catecholamines and (3-adrenoceptor blockade In: Progress in Catecholamine Research Part C: Clinical Aspects. 1988, pp. 125–129.Google Scholar
  165. 165.
    Paran E, Neumann L, Cristal N. Effects of mental and physical stress on plasma catecholamine levels before and after beta-adrenoceptor blocker treatment. Eur J Clin Pharmacol 1992; 43: 11–15.PubMedCrossRefGoogle Scholar
  166. 166.
    Neftel KA, Käser HE, Vorkauf H. Different effects of selective and nonselective beta adrenoceptor blockade on urinary catecholamine and creatinine excretion in stress. Int J Clin Pharmacol, Ther Toxicol 1984; 22: 118–119.Google Scholar
  167. 167.
    Lee D, Lu ZW, DeQuattro V. Neural mechanisms in primary hypertension—Efficacy of a-blockade with doxazosin during stress. Am J Hypertens 1996; 9: 47–53.PubMedCrossRefGoogle Scholar
  168. 168.
    Zhang X, Kindel GH, Wülfert E, Hanin I. Effects of immobilization stress on hippocampal monoamine release: modification by mivazerol, a new a2-adrenoceptor agonist. Neuropharmacology 1995; 34: 1661–1672.PubMedCrossRefGoogle Scholar
  169. 169.
    Pflug AE, Halter JB. Effect of spinal anesthesia on adrenergic tone and the neuroendocrine responses to surgical stress in humans. Anesthesiology 1981; 55: 120–126.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Otto Kuchel

There are no affiliations available

Personalised recommendations