Immobilized Enzyme Reactions on Beads and Membranes

  • Dibakar Bhattacharyya
  • Sowmya Ganapathi
  • Shekhar Vishwanath
  • Melissa Summers
  • D. Allan Butterfield
Chapter

Abstract

Immobilized biocatalysts have widespread applications in areas like organic synthesis, pollution control and for diagnostic purposes. Enzymes can be immobilized on different supports like polymeric beads, gels, and membranes. Immobilization eliminates the need to separate an enzyme from the product solution and allows these expensive compounds to be reused. In addition, the thermal stability, pH stability, and storage stability of an enzyme may be increased as a result of immobilization.

Keywords

Immobilize Enzyme Spin Label Storage Stability Enzyme Loading Hollow Fiber Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. F. Taylor, “Protein Immobilization: Fundamentals and Applications”, Marcel Dekker, Inc., New York (1991).Google Scholar
  2. 2.
    E. Klein, “Affinity Membranes”, John Wiley & Sons, Inc., New York (1990).Google Scholar
  3. 3.
    J. Koubek, J. Volf, and J. Pasek, Adsorption of amines on alumina, J. Catal., 38:385 (1975).CrossRefGoogle Scholar
  4. 4.
    R. A. Messing, Simultaneously immobilized glucose oxidase and catalase in controlled-pore titania, Biotechnol. Bioeng., 16: 897 (1974).PubMedCrossRefGoogle Scholar
  5. 5.
    P. S. Skerker and D. S. Clark, Catalytic properties and active-site structural features of immobilized horse liver alcohol dehydrogenase, Biotechnol. Bioeng., 28:148 (1988).CrossRefGoogle Scholar
  6. 6.
    T. Hayashi and Y. Ikada, Protease immobilization onto poly-acrolein microspheres, Biotechnol. Bioeng., 35: 518 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Schwimmer, “Source Book of Food Enzymology”, The Avi Publishing Co., Inc. (1981).Google Scholar
  8. 8.
    J. R. Whitaker, “Principles of Enzymology for the Food Sciences”, Marcel Dekker, Inc., New York (1972).Google Scholar
  9. 9.
    D. D. Do and M. M. Hossain, A novel method of determination of the internal enzyme distribution within porous solid supports and the deactivation rate constant, Biotechnol. Bioeng., 28: 486 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    D. D. Do and M. M. Hossain, Determination of intrinsic parameters for immobilization reactions of catalase and amyloglucosidase in porous glass supports, Biotechnol. Bioeng., 31:730 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    P. T. Vasudevan and R. H. Weiland, Deactivation of catalase by hydrogen peroxide, Biotechnol. Bioeng., 36:783 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    D. I. Metelitsa, E. I. Plyugacheva, V. A. Artomonov and G. M. Baran, Catalytic activity of catalase adsorbed on MIFIL polyamide membranes, Kinetics and Catalysis, 31:1233 (1991).Google Scholar
  13. 13.
    S. Vishwanath, W. Huang, L. G. Bachas and D. Bhattacharyya, Site-directed and random enzyme immobilization on functionalized membranes: kinetic studies and models, J. Membrane Sci., In press (1995).Google Scholar
  14. 14.
    D. A. Butterfield, J. Lee, S. Ganapathi and D. Bhattacharyya, Biofunctional membranes part IV. Active-site structure and stability of an immobilized enzyme, papain, on modified polysulfone membranes studied by electron paramagnetic resonance and kinetics, J. Membrane Sci. 91: 47 (1994).CrossRefGoogle Scholar
  15. 15.
    S. Ganapathi, D. A. Butterfield, D. Bhattacharyya, Flat-sheet and hollow fiber membrane bioreactors: A study of the kinetics and active-site conformational changes of immobilized papain including sorption studies of reaction constituents, J. Chem. Tech. Biotech., In press (1995).Google Scholar
  16. 16.
    K. Kono, F. Tabeta and T. Takagishi, pH-responsive permeability of poly(acrylic acid) — poly(ethylenimine) complex capsule membrane, J. Membrane Sci., 76:233 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Dibakar Bhattacharyya
    • 1
    • 3
  • Sowmya Ganapathi
    • 1
    • 3
  • Shekhar Vishwanath
    • 1
    • 3
  • Melissa Summers
    • 1
    • 3
  • D. Allan Butterfield
    • 2
    • 3
  1. 1.Department of Chemical and Materials EngineeringUniversity of KentuckyLexingtonUSA
  2. 2.Department of ChemistryUniversity of KentuckyLexingtonUSA
  3. 3.Center of Membrane SciencesUniversity of KentuckyLexingtonUSA

Personalised recommendations