Design of Membrane-Based Bioartificial Organs

  • Frank T. Gentile
  • Edward J. Doherty
  • Rebecca H. Li
  • David H. Rein
  • Dwaine F. Emerich
Chapter

Abstract

The goal of encapsulated cell therapy research is to develop implants containing living xenogeneic cells to treat serious and disabling human conditions. The concept is straightforward: cells or small clusters of tissue are surrounded by a selective membrane barrier which admits oxygen and required metabolites, releases bioactive cell secretions but restricts the transport of the larger cytotoxic agents of the body’s immune defense system. Use of a selective membrane both eliminates the need for chronic immuno-suppression in the host and allows cells to be obtained from non-human sources, thus avoiding the cell-sourcing constraints which have limited the clinical application of generally successful investigative trials of unencapsulated cell transplantation for chronic pain1, Parkinson’s disease2, and type I diabetes.3–5 Cross-species immunoisolated cell therapy has been validated in small and large animal models of chronic pain6,7, Parkinson’s disease8,9, and Type 1 diabetes10–12, and is under active investigation by several groups in animal models of Huntington’s13, ALS14 and Alzheimer’s15–19. In addition, the first encapsulated therapy using xenografts in humans has been performed in chronic nain20 and ALS21.

Keywords

Amyotrophic Lateral Sclerosis Mass Transfer Coefficient Hollow Fiber Cholinergic Neuron Sherwood Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Sagen, ASAIO Journal 38:24 (1992).PubMedCrossRefGoogle Scholar
  2. 2.
    O. Lindvall, et al. Prog. Brain Res. 82:729 (1990).PubMedCrossRefGoogle Scholar
  3. 3.
    F. P. Sullivan et al., Transplantation (Baltimore) 44:465 (1987).CrossRefGoogle Scholar
  4. 4.
    C. Ricordi, D. W. Scharp, P. E. Lacy, Transplantation (Baltimore) 45:994 (1988).CrossRefGoogle Scholar
  5. 5.
    A. M. Posselt et al., Science 249:1293 (1990).PubMedCrossRefGoogle Scholar
  6. 6.
    J. Sagen, H. Wang, P.A. Tresco, P. Aebischer, Transplants of immunologically isolated xenogeneic chromaffin cells provide a long-term source of painreducing neuroactive substances, J. Neurosci. 13(6):2415 (1993).PubMedGoogle Scholar
  7. 7.
    J.M. Joseph, M.B. Goddard, J. Mills, V. Padrun, A. Zurn, B. Zelinski, J. Favere, J.P. Gardaz, F. Mosimann, J. Sagan, L. Christenson, P. Aebischer, Transplantation of encapsulated bovine chromaffin cells in the sheep subarachnoid space: a preclinical study for the treatment of chronic pain, Cell Transplantation 3:355 (1994).PubMedGoogle Scholar
  8. 8.
    P. Aebischer, S.R. Winn, and P.M. Galletti, Transplantation of neural tissue in polymer capsules, Brain Research 448:364 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    P. Aebischer, M. Goddard, P. Signore, and R. Timpson, Functional recovery in hemiparkinsonian primates transplanted with polymer encapsulated PC12 cells, Exp. Neurology 126:1 (1994).CrossRefGoogle Scholar
  10. 10.
    W.L. Chick, J.J. Perna, V. Lauris, D. Law, P.M. Galletti, G. Panol, A.D. Whittemore, A.A. Like, C.K. Colton, M.J. Lysaght, Artificial pancreas using living beta cells: effects of glucose homeostasis in diabetic rats, Science 197:780 (1977).PubMedCrossRefGoogle Scholar
  11. 11.
    D.W. Scharp, N.S. Mason, and R.E. Sparks, Islet immuno-isolation: the use of artificial organs to prevent tissue rejection, World J. Surg. 8:221 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    P.E. Lacy, O.H. Hegre, A. Gerasimidi-Vazeou, F.T. Gentile, K.E. Dionne, Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets, Science, 254:1782, (1991).PubMedCrossRefGoogle Scholar
  13. 13.
    D.F. Emerich, J.P. Hammang, E.E. Baetge, S.R. Winn, Implantation of polymer-encapsulated human nerve growth factor-secreting fibroblasts attenuates the behavior and neuropathological consequences of quinolinic acid into rodent striatum, Exp. Neurology (in press) (1994).Google Scholar
  14. 14.
    Y. Sagot, S.A. Tan, E. Baetge, H. Schmalbruch, A.C. Kato, P. Aebischer, Polymer encapsulated cell lines genetically engineered to release ciliary neurotrophic factor can slow down progressive motor neuronopathy in the mouse, Eur. Jour. of Neurosci. 7:1313 (1995).CrossRefGoogle Scholar
  15. 15.
    D. Hoffman, X.O. Breakfield, M.P. Short, and P. Aebischer, Transplantation of polymer-encapsulated cell line genetically engineered to release NGF, Exp. Neurology 122:100 (1993).CrossRefGoogle Scholar
  16. 16.
    J.H. Kordower, S.R. Winn, Y.-T. Liu, E.J. Mufson, J.R. Sladek, J.P. Hammang, E.E. Baetge, and D.F. Emerich, The aged monkey basal forebrain: rescue and sprouting of axotomized basal forebrain neurons following grafts of encapsulated human NGF-secreting cells, Proc. Natl. Acad. Sci. 91:10898 (1994).PubMedCrossRefGoogle Scholar
  17. 17.
    S. Winn, J. Hammang, D. F. Emerich, A. Lee, R. D. Palmiter, and E.E. Baetge, Polymer-encapsulated cells genetically modified to secrete human nerve growth factor to promote the survival of axotomized septal cholinergic neurons, Proc. Natl. Acad. Sci. 91: 2324 (1994).PubMedCrossRefGoogle Scholar
  18. 18.
    D.F. Emerich, S.R. Winn, J. Harper, J. Hammang, E.E. Baetge, J.H. Kordower, Implants of polymer-encapsulated human NGF-secreting cells in the nonhuman primate: rescue and sprouting of degenerating cholinergic basal forebrain neurons, Journal of Comparative Neurology 349:148 (1994).PubMedCrossRefGoogle Scholar
  19. 19.
    M.D. Lindner, C.E. Kearns, S.R. Winn, B.R. Frydel, D.F. Emerich, Effects of intraventricular encapsulated hNGF-secreting fibroblasts in aged rats. Cell Transplantation (in press) (1995).Google Scholar
  20. 20.
    P. Aebischer, E. Buschser, J.M. Joseph, J. Favre, N. deTribolet, M.J. Lysaght, S.A. Rudnick, M.B. Goddard, Transplantation in humans of encapsulated xenogeneic cells without immunosuppression — a preliminary report, Transplantation (in press) (1994).Google Scholar
  21. 21.
    N.A-M. Pochon, B. Heyd, N. Déglon, J-M. Joseph, Z. Zurn, E.E. Baetge, J.P. Hammang, M. Goddard, M. Lysaght, F. Kaplan, A.C. Kato, M. Schluep, L. Hirt, F. Regli, F. Prochet, N. deTribolet, P. Aebischer, Gene therapy for Amyotrophic Lateral Sclerosis (ALS) using a polymer encapsulated xenogeneic cell line engineered to secrete hCNTF, Gene Therapy Protocols (submitted) (1995).Google Scholar
  22. 22.
    D.W. Scharp, C.J. Swanson, B.J. Olack, P.P. Latta, O.D. Hegre, E.J. Doherty, F.T. Gentile, K.S. Flavin, M.F. Ansara, P.E. Lacy, Protection of encapsulated human islets without immunosuppression in patients with type i and type ii diabetes and in non-diabetic controls, Diabetes 43:1167 (1994).PubMedCrossRefGoogle Scholar
  23. 23.
    S.J. Sullivan, T. Maki, K.M. Borland, M.D. Mahoney, B.A. Solomon, T.E. Muller, A.P. Monoco, W.L. Chick, Biohybrid artificial pancreas: longterm implantation studies in diabetic, pancreatectomized dogs, Science 252: 718 (1991) .PubMedCrossRefGoogle Scholar
  24. 24.
    P. Aebischer, J. Sagen, J. Joseph, M. Goddard, F. Mosimann, Xeno-transplantation of encapsulated bovine chromaffin cells in sheep subarachnoid for the treatment of pain: a preclinical study, Cell Transplantation in press (1995).Google Scholar
  25. 25.
    P. Soon-Shiong, E. Feldmen, R. Nelson, J. Komtebedde, O. Smidrod, G. Skjak-Braek, T. Espevik, R. Heintz, M. Lee, Successful reversal of spontaneous diabetes in dogs by intraperitoneal microencapsulated islets. Transplantation 54:769 (1992).PubMedCrossRefGoogle Scholar
  26. 26.
    J. C. Y. Dunn, R. G. Tompkins, M. L. Yarmush, Biotechnol. Prog. 7:237 (1991).PubMedCrossRefGoogle Scholar
  27. 27.
    D. J. Mooney et al., J . Cell Physiol. 151:497 (1992).PubMedCrossRefGoogle Scholar
  28. 28.
    A. Rotem, M. Toner, R. A. Tompkins, M. C. Yarmush, Biotechnol. Prog. 40:286 (1992) .Google Scholar
  29. 29.
    S. UyaTna, P.-M. Kaufmann, T. Takeda, J. P. Vacanti, Transplantation (in press) (1995).Google Scholar
  30. 30.
    D.F. Emerich, B.R. Frydel, T.R. Flanagan, M. Palmatier, S.R. Winn, and L. Christenson, Transplantation of polymer encapsulated PC12 cells: use of chitosan as an immobilization matrix, Cell Transplantation, 2:241 (1993).Google Scholar
  31. 31.
    M. Tachibana, G. R Nagamatsu, J. C. Addonizio, J. Urol. 133: 866 (1988).Google Scholar
  32. 32.
    A. Atala et al., J. Urology 148:658 (1992).Google Scholar
  33. 33.
    H. Strathmann, Production of microporous media by phase inversion processes,in “Material Science of Synthetic Membranes,”American Chemical Society 165 (1985).Google Scholar
  34. 34.
    J. Brauker, Bioarchitecture of polymers determines soft tissue response to implants, ACS Polymer Sci. and Engineering — Biomaterials for the 21st Century Meeting, Palm Springs, CA (1992).Google Scholar
  35. 35.
    D. Boggs, A. Khare, D. McLarty, R. Pauley, S.M. Sternberg, Membrane for immunoisolation, Proceedings of the North American Membrane Society, 6th Annual Meeting, Breckenridge, CO (1994).Google Scholar
  36. 36.
    C.K. Colton, E.S. Augoustiniatos, Bioengineering in development of the hybrid artificial pancreas, J. Biomech. Eng. (Trans ASME) 113:152 (1991).CrossRefGoogle Scholar
  37. 37.
    L. Christenson, K.E. Dionne, M.J. Lysaght, Biomedical applications of immobilized cells, in “Fundamentals of animal cell encapsulation and immobilization”, Goosen, M.F.A. ed., C.R.C. Press, Boca Raton, (1993)Google Scholar
  38. 38.
    R. Langer, J.P. Vacanti, Tissue engineering, Science 260:920 (1993).PubMedCrossRefGoogle Scholar
  39. 39.
    C. Mullon, K. Dunleavy, A. Foley, J. O’Neil, J. Rudolph, C. Toscone, I. Otsu, T. Maki, A. Monoco, K. Gagnon, S. Naik, H. Santangini, D. Trenkler, H. Jauregui, B. Solomon, Use of synthetic membranes in cell based medical devices — artificial pancreas and liver assist device, Poly. Mat. Sci. Eng. 70:221 (1994).Google Scholar
  40. 40.
    M.J. Lysaght, B. Frydel, F.T. Gentile, D.F. Emerich, S.R. Winn, Recent progress in immunoisolated cell therapy, J. Cell Biochem. 56:196 (1994).PubMedCrossRefGoogle Scholar
  41. 41.
    M.J. Lysaght, U. Baurmeister, Dialysis, in “Kirk-Othmer Encyclopedia of Chemical Technology, 4th Ed., 8”, John Wiley & Sons, New York (1993).Google Scholar
  42. 42.
    K. Keith, W.Z. Block, “Basic heat transfer”, Harper and Row, New York (1980).Google Scholar
  43. 43.
    C.K. Colton, E.G. Lowrie, Hemodialysis: physical principles and technical considerations, in “The kidney”, Brenner, B.M. and Rector, F.C., eds., W.B. Saunders Co., Philadelphia (1981).Google Scholar
  44. 44.
    C.K. Colton, K.A. Smith, P. Stroeve, E.W. Merrill, Laminar flow mass transfer in a flat duct with permeable walls, AICHE J. 17:773 (1971).CrossRefGoogle Scholar
  45. 45.
    K.E. Dionne, B.M. Cain, R.H. Li, E.J. Doherty, M.J. Lysaght, D.H. Rein, F.T. Gentile, Transport characterization of membranes for immunoisolation, Biomaterials (in press) (1995).Google Scholar
  46. 46.
    J.S. Swen, T.R. Flanagan, T.G. Wiggans, Assessing Commercial Potential Of Central Nervous System Delivery Approaches, Methods in Neuroscience 21:485 (1994).Google Scholar
  47. 47.
    L. Olson, A. Nordberg, H. von Holst, L. Backman, T. ebendal, I. Alafuzoff, K. Amberla, P. Hartvig, A. Herlitz, A. Lilja, H. Lundqvist, B. Langstrom, B. Meyerson, A. Persson, M. Vlitanen, B. Winblad, A. Seiger. Nerve growth factor affects 11C-nicotine binding, blood flow, EEG, and verbal episodic memory in an Alzheimer patient (case report). J. Neuronal Transmission (P.-D. Sect.) 4:79 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Frank T. Gentile
    • 1
  • Edward J. Doherty
    • 1
  • Rebecca H. Li
    • 1
  • David H. Rein
    • 1
  • Dwaine F. Emerich
    • 1
  1. 1.CytoTherapeutics, Inc.ProvidenceUSA

Personalised recommendations