Everything Else in the Spectrum

  • David B. Williams
  • C. Barry Carter

Abstract

The energy resolution of the magnetic prism spectrometer is very good, which means that the energy-loss spectrum contains a wealth of information about the specimen in addition to its basic elemental chemistry. In the previous chapter, we mentioned how we can learn about chemistry using ionization edges. Much of this chemical information is contained in fine-detail intensity variations at the ionization edges in the core-loss spectra termed energy-loss near-edge structure (ELNES) and extended energy-loss fine structure (EXELFS). From this fine structure, we can obtain information on how the ionized atom is bonded, the coordination of the atom, and its density of states. Furthermore, we can probe the distribution of other atoms around the ionized atom, i.e., the radial distribution function (RDF). Understanding these phenomena requires that we use certain concepts from atomic and quantum physics. The nonphysicist can skip some sections at this time and just concentrate on the results. The rewards of working through this topic will be an appreciation of some of the more powerful aspects of EELS.

Keywords

Radial Distribution Function Interband Transition Plasmon Peak Ionization Edge Unfilled State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General References

  1. Egerton, R.F. (1996) Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd edition. Plenum Press, New York.CrossRefGoogle Scholar
  2. Raether, H. (1965) Electron Energy-Loss Spectroscopy, Springer Tracts in Modern Physics,Springer-Verlag, New York.Google Scholar
  3. Teo, B.K. and Joy, D.C. (1981) EXAFS Spectroscopy; Techniques and Applications, Plenum Press, New York.CrossRefGoogle Scholar

Specific References

  1. Batson, P.E. (1995) Ultramicroscopy 59, 63.CrossRefGoogle Scholar
  2. Browning, N.D. and Pennycook, S.J. (1995) J. Microsc. 180, 230.CrossRefGoogle Scholar
  3. Bruley, J. Williams, D.B., Cuomo, J.J., and Pappas, D.P. (1995) J. Microsc. 180 22.Google Scholar
  4. Brydson, R. (1991) EMSA Bulletin 21, 57.Google Scholar
  5. Cockayne, D.J.H., McKenzie, D., and Muller, D. (1991) Microsc. Microanal. Microstruct. 2, 359.CrossRefGoogle Scholar
  6. Deininger, C., Necker, G., and Mayer, J. (1994) Ultramicroscopy 54, 15.CrossRefGoogle Scholar
  7. Hunt, J.A. (1995) in Microbeam Analysis-1995 (Ed. E.S. Etz), p. 215, VCH Publishers, New York.Google Scholar
  8. Hunt, J.A. and Williams, D.B. (1991) Ultramicroscopy 38, 47.CrossRefGoogle Scholar
  9. Jeanguillaume, C. and Colliex, C. (1989) Ultramicroscopy 28, 252.CrossRefGoogle Scholar
  10. Knowles, K.M., Ed. (1994) J. Microsc. 174, 131.Google Scholar
  11. Leapman, R.D. and Silcox, J. (1979) Phys. Rev. Lett. 42, 1362.CrossRefGoogle Scholar
  12. Leapman, R.D., Grunes, L.A., and Fejes, P.L. (1982) Phys. Rev. B26, 614.CrossRefGoogle Scholar
  13. Qian, M., Sarikaya, M., and Stern, E.A. (1995) Ultramicroscopy 59, 137.CrossRefGoogle Scholar
  14. Schattschneider, P. and Exner, A. (1995) Ultramicroscopy 59, 241.CrossRefGoogle Scholar
  15. Sklad, P., Angelini, P., and Sevely, J. (1992) Phil Mag. A65, 1445.Google Scholar
  16. Spence, J.C.H., Lo, W., and Kuwabara, M. (1990) Ultramicroscopy 33, 69.CrossRefGoogle Scholar
  17. Wang, Y.Y., Cheng, S.C., Dravid, V.P., and Zhang, F.C. (1995) Ultramicroscopy 59, 109.CrossRefGoogle Scholar
  18. Williams, D.B. and Edington, J.W. (1976) J. Microsc. 108, 113.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • David B. Williams
    • 1
  • C. Barry Carter
    • 2
  1. 1.Lehigh UniversityBethlehemUSA
  2. 2.University of MinnesotaMinneapolisUSA

Personalised recommendations