Circular Dichroism of Collagen and Related Polypeptides

  • Rajendra S. Bhatnagar
  • Craig A. Gough
Chapter

Abstract

Circular dichroism (CD) spectra are used extensively for studying the conformation of proteins and polypeptides. The correlation of certain spectral features with well-defined peptide conformations has been used to develop computational procedures for conformational analysis (Perczel et al., 1992; Johnson, 1992; Venyaminov et al., 1993). While these procedures yield reasonable estimates of the fractions of a helix, 13 strand and sheet as well as various types of bends present in a test polypeptide, significant fractions are often ascribed “random” or “other” conformations. In these computations, conformations related to structures rich in imino peptide bonds are seldom taken into account. The imino-rich scleroprotein type I collagen and other members of the collagen gene family account for over one-third of the total protein content in the vertebrate body. The conformation of collagen is related to the polyproline II helix. There is growing evidence that many globular proteins may contain small domains with collagenlike structure (Ananthanarayanan et al., 1987; Adzhubei and Sternberg, 1993, 1994). Collagen, polyproline II, and related synthetic polypeptides exhibit CD spectra that appear to be similar to the spectra of many globular proteins in the so-called random coil conformation arising from the collapse of stabilizing interactions.

Keywords

Circular Dichroism Random Coil Globular Protein Triple Helix Positive Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, A. J., Greenfield, N.J., and Fasman, G. D., 1973, Circular dichroism and optical rotatory dispersion of proteins and polypeptides, Methods Enzymol. 27D: 675–735.PubMedCrossRefGoogle Scholar
  2. Adzhubei, A. A., and Sternberg, M. J. E., 1993, Left-handed polyproline II helices commonly occur in globular proteins, J. Mol. Biol. 229: 472–493.PubMedCrossRefGoogle Scholar
  3. Adzhubei, A., A., and Sternberg, M. J. E., 1994, Conservation of polyproline II helices in homologous proteins: Implications for structure prediction by model building, Protein Sci. 3: 2395–2410.CrossRefGoogle Scholar
  4. Ananthanarayanan, V. S., Brahmachari, S. K., Rapaka, R. S., and Bhatnagar, R. S., 1976, Polypeptide models of collagen. Solution properties of (Gly-Pro-Sar)n and (Gly-Sar-Pro)n, Biopolymers 15: 707–716.PubMedCrossRefGoogle Scholar
  5. Ananthanarayanan, V. S., Soman, K. V., and Ramakrishnan, C., 1987, A novel supersecondary structure in globular proteins comprising the collagen-like helix and 13-turn, J. Mol. Biol. 198: 705–709.PubMedCrossRefGoogle Scholar
  6. Applequist, J.,1981, Theoretical Tr —Tr* absorption and circular dichroic spectra of helical poly(L-proline) forms I and II, Biopolymers 20:2311–2322.Google Scholar
  7. Bansal, M., Brahmachari, S. K., and Sasisekharan, V., 1979, Structural investigations on poly(4-hydroxyL-proline), I. Theoretical studies, Macromolecules 12: 19–23.CrossRefGoogle Scholar
  8. Bhatnagar, R. S., and Rapaka, R. S., 1975, Polypeptide models of collagen: Properties of (Pro-Pro-pAla)n, Biopolymers 14: 597 - 603.PubMedCrossRefGoogle Scholar
  9. Bhatnagar, R. S., and Rapaka, R. S., 1976, Synthetic polypeptide models of collagen: Synthesis and applications, in: Biochemistry of Collagen ( G. N. Ramachandran and A. H. Reddi, eds.), pp. 479–523, Plenum Press, New York.CrossRefGoogle Scholar
  10. Bhatnagar, R. S., Rapaka, R. S., and Ananthanarayanan, V. S., 1977, Conformational properties of polypeptide models of collagen, Adv. Exp. Biol. Med. 86A: 491–507.CrossRefGoogle Scholar
  11. Bhatnagar, R. S., Pattabiraman, N., Sorensen, K. R., Langridge, R., MacElroy, R. D., and Renugopalakrishnan, V., 1988, Inter-chain proline:proline contacts contribute tothe stability of the triple helical conformation, J. Biomol. Struct. Dynam. 6: 223–233.CrossRefGoogle Scholar
  12. Brahmachari, S. K., Ananthanarayanan, V. S., Rapaka, R. S., and Bhatnagar, R. S., 1978, Polypeptide models of collagen II. Solution properties of (Pro-Gly-Phe)n, Biopolymers 17: 2097–2105.CrossRefGoogle Scholar
  13. Brahmachari, S. K., Bansal, M., Ananthanarayanan, V. S., and Sasisekharan, V., 1979, Structural investi- gations on poly(4-hydroxy-L-proline). 2. Physicochemical studies, Macromolecules 12: 23–28.CrossRefGoogle Scholar
  14. Brodsky-Doyle, B., Leonard, K. R., and Reid, K. B. M., 1976, Circular dichroism and electron microscopy studies of human subcomponent Clq before and after limited proteolysis by pepsin, Biochem. J. 159: 279–286.PubMedGoogle Scholar
  15. Brown, F. R., III, Hopfinger, A. J., and Blout, E. R., 1972, The collagen-like triple helix to random coil transition: Experiment and theory, J. Mol. Biol. 63: 101–115.PubMedCrossRefGoogle Scholar
  16. Caldwell, J. W., and Applequist, J., 1984, Theoretical Tr—Tr* absorption, circular dichroic and linear dichroic spectra of collagen triple helices, Biopolymers 23:1891–1904.Google Scholar
  17. Chien, J. C. W., and Wise, W. B., 1975, A 13C nuclear magnetic resonance and circular dichroism study of collagen—gelatin transformation in enzyme solubilized collagen, Biochemistry 14:2786-2792. Chu, F. H., and Lukton, A., 1974, Collagenase induced changes in the circular dichroism spectrum of collagen, Biopolymers 13: 1427 - 1434.Google Scholar
  18. Doyle, B. B., Traub, W., Lorenzi, G. P., and Blout, E. R., 1971, Conformational investigations on the polypeptide and oligopeptides with the repeating sequence L-alanyl-L-prolyl glycine, Biochemistry 10: 3052–3057.PubMedCrossRefGoogle Scholar
  19. Dyson, H. J., and Wright, P. E., 1991. Defining solution conformations of small linear peptides, Annu. Rev. Biophys. Chem. 20: 519–538.CrossRefGoogle Scholar
  20. Gordon, M. K., and Olson, B. R., 1990, The contribution of collagenous proteins to tissue specific matrix assemblies, Curr. Opin. Cell Biol. 2: 833–838.PubMedCrossRefGoogle Scholar
  21. Guantieri, V., Tamburro, A. M., Cabrol, D., Broch, H., and Vasilescu, D., 1987, Conformational studies on polypeptide models of collagen. Poly(Gly-Pro-Val), poly(Gly-Pro-Met), poly(Gly-Val-Pro) and poly(Gly-Met-Pro), Int. J. Peptide Protein Res. 29: 216–230.CrossRefGoogle Scholar
  22. Hayashi, T., Curran-Patel, S., and Prockop, D. J., 1979, Thermal stability of the triple helix of type I procollagen and collagen. Precautions for minimizing ultraviolet damage to proteins during circular dichroism studies, Biochemistry 18: 4182–4187.CrossRefGoogle Scholar
  23. Helbecque, N., and Loucheux-Lefebvre, M. H., 1982, Critical chain length for polyproline-II structure formation in H-Gly-(Pro),; OH, Int. J. Peptide Protein Res. 19: 94–101.CrossRefGoogle Scholar
  24. Holmskov, U., Malhotra, R., Sim, R. B., and Jensenius, J. C., 1994, Collectins: Collagenous C-type lectins of the innate immune defense system, Immunol. Today 15: 67–73.PubMedCrossRefGoogle Scholar
  25. Hoppe, H.-J., and Reid, K. B. M., 1994, Collectins—Soluble proteins containing collagenous regions and lectin domains—And their roles in innate immunity, Protein Sci. 3: 1143–1158.PubMedCrossRefGoogle Scholar
  26. Ichijo, H., Hellman, U., Wernstedt, C., Gonez, L. J., Claesson-Welsh, L., Heldin, C., and Miyazono, K., 1993, Molecular cloning and characterization of ficolin, a multimeric protein with fibrinogen-and collagen-like domains, J. Biol. Chem. 268: 14505–14513.PubMedGoogle Scholar
  27. Jacenko, O., Olsen, B. R., and LuValle, P., 1991, Organization and regulation of collagen genes, Crit. Rev. Eukaryot. Gene Express. 1: 327–353.Google Scholar
  28. Jenness, D. D., Sprecher, C., and Johnson, W. C., Jr., 1976, Circular dichroism of collagen, gelatin, and poly(proline) II in the vacuum ultraviolet, Biopolymers 15: 513–521.PubMedCrossRefGoogle Scholar
  29. Johnson, W. C., Jr., 1990, Protein secondary structure and circular dichroism: A practical guide, Proteins 7: 205–214.PubMedCrossRefGoogle Scholar
  30. Johnson, W. C., Jr., 1992, Analysis of circular dichroism spectra, Methods Enzymol. 210:426-447. Kodama, T., Freeman, M., Rohrer, L., Zabrecky, J., Matsudaira, P.; Krieger, M., 1990, Type I macrophage scavenger receptor contains a-helical and collagen-like coiled-coils, Nature 343: 426–447.Google Scholar
  31. Krimm, S., and Mark, J. E., 1968, Conformations of polypeptides with ionized side chains of equal length, Proc. Natl. Acad. Sci. USA 60: 1122–1129.PubMedCrossRefGoogle Scholar
  32. Lobachev, V. M., 1987, Detection of vibron phenylalanine bands in circular dichroism spectra for collagen, Biofizika 32: 157–159.PubMedGoogle Scholar
  33. Long, C. G., Braswell, E., Zhu, D., Apigo, J., Baum, J., and Brodsky, B., 1993, Characterization of collagen-like peptides containing interruptions in the repeating Gly-X-Y sequence, Biochemistry 32: 11688–11695.PubMedCrossRefGoogle Scholar
  34. MacPhee-Quiley, K., Taylor, P., and Taylor, S., 1986, Primary structure of the catalytic subunits from two molecular forms of acetylcholinesterase: A comparison of NH2-terminal and active center sequences, J. Biol. Chem. 260: 12185–12189.Google Scholar
  35. Manning, M. C., and Woody, R. W., 1991, Theoretical CD studies of polypeptide helices: Examination of important electronic and geometric factors, Biopolymers 31. 569–586.PubMedCrossRefGoogle Scholar
  36. Mays, C., and Rosenberry, T. L., 1981, Characterization of pepsin-resistant collagen-like tail subunit fragments of 18S and 14S acetylcholinesterase from Electrophorus electricus, Biochemistry 20: 2810–2817.PubMedCrossRefGoogle Scholar
  37. Okuyama, K., Okuyama, S., Arnott, S., Takayanagi, M., and Kakudo, M., 1981, Crystal and molecular structure of a collagen-like polypeptide, J. Mol. Biol. 152: 427–443.PubMedCrossRefGoogle Scholar
  38. Paul, S. M., Bailie, R. D., and Liberti, P. A., 1978, Solvent effects on the structure of rabbit Clq, a subcomponent of the first component of the complement, J. Biol. Chem. 253: 5658–5664.PubMedGoogle Scholar
  39. Perczel, A., Park, K., and Fasman, G. D., 1992, Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: A practical guide, Anal. Biochem. 203: 83–93.PubMedCrossRefGoogle Scholar
  40. Pysh, E. S., 1974, Random-phase calculation of polyproline II circular dichroism, Biopolymers 13: 1563–1571.PubMedCrossRefGoogle Scholar
  41. Ramachandran, G. N., 1988, Stereochemistry of collagen, Int. J. Peptide Protein Res. 31:1-16. Ramachandran, G. N., Bansal, M., and Bhatnagar, R. S., 1973, A hypothesis on the role of hydroxyproline in stabilizing collagen structure, Biochim. Biophys. Acta 322: 166–174.Google Scholar
  42. Rapaka, R. S., and Bhatnagar, R. S., 1975, Polypeptide models of collagen. Synthesis of (Pro-Pro-(3Ala)~, Int. J. Peptide Protein Res. 7: 475–480.CrossRefGoogle Scholar
  43. Rapaka, R. S., and Bhatnagar, R. S., 1976, Polypeptide models of collagen: Synthesis of (Pro-Pro-Ala)n and (Pro-Pro-Val)„, Int. J. Peptide Protein Res. 8: 371–377.CrossRefGoogle Scholar
  44. Reid, K. B. M., 1979, Complete amino acid sequence of the three collagen-like regions present in subcomponent Clq of the first component of human complement, Biochem. J. 179: 367–371.PubMedGoogle Scholar
  45. Renugopalakrishnan, V., Druyan, M., Ramesh, S., and Bhatnagar, R. S., 1981, Molecular mechanisms in the mineralization of collagen, in: The Chemistry and Biology of Mineralized Connective Tissue-Developments in Biochemistry, vol. 22 ( A. Veis, ed.), pp. 293–298, Elsevier North Holland, New York.Google Scholar
  46. Renugopalakrishnan, V., Chandrakasan, G., Moore, S., Hutson, T. B., Berney, C. V., and Bhatnagar, R. S., 1989, Bound water in collagen: Evidence from Fourier transform infrared photoacoustic spectroscopic study, Macromolecules 22: 4121–4124.CrossRefGoogle Scholar
  47. Rippon, W. B., and Walton, A. G., 1971, Optical properties of the polyglycine II helix, Biopolymers 10: 1207–1212.PubMedCrossRefGoogle Scholar
  48. Ronish, E. W., and Krimm, S., 1972, Theoretical calculation of the circular dichroism of unordered polypeptide chains, Biopolymers 11. 1919–1928.PubMedCrossRefGoogle Scholar
  49. Rosenbloom, J., Harsch, M., and Jimenez, S. A., 1973, Hydroxyprolein content determines the denaturation temperature of chick tendon collagen, Arch. Biochem. Biophys. 158: 478–481.PubMedCrossRefGoogle Scholar
  50. Sasisekharan, V., and Balaji, V. N., 1979, Fourfold helical structures for polypeptides, Macromolecules 12: 28–32.CrossRefGoogle Scholar
  51. Schimmel, P. R., and Flory, P. J., 1968, Conformational energies and configurational statistics of copolypeptides containing L-proline, J. Mol. Biol. 34: 104–110.CrossRefGoogle Scholar
  52. Tamburro, A. M., Scatturin, A., and Del Pra, A., 1977, Conformational studies on sequential polypeptides. Part VII. Structural investigations on (Pro-Phe-Gly). and (Phe-Pro-Gly)„, Int. J. Peptide Protein Res. 9: 310–318.CrossRefGoogle Scholar
  53. Tamburro, A. M., Guantieri, V., Cabrol, D., Broch, H., and Vaslescu, D., 1984, Experimental and conformational studies on polypeptide models of collagen. Poly(Gly-Pro-Ile) and poly(Gly-Ile-Pro), Int. J. Peptide Protein Res. 24: 627–635.CrossRefGoogle Scholar
  54. Tanaka, T., Wada, Y., Nakamura, H., Doi, T., Imanishi, T., and Kodama, T., 1993, A synthetic model of collagen taken from bovine macrophage scavenger receptor, FEBS Lett. 334: 272–276.PubMedCrossRefGoogle Scholar
  55. Tiffany, M. L., and Krimm, S., 1968, Circular dichroism of poly-L-proline in an unordered conformation, Biopolymers 6: 1767–1770.PubMedCrossRefGoogle Scholar
  56. Tischenko, V. M., Ichtenko, A. M., Andryev, C. V., and Kajava, A. V., 1993, Thermodynamic studies of the collagen-like region of human subcomponent Clq. A water-containing structural model, J. Mol. Biol. 234: 654–660.PubMedCrossRefGoogle Scholar
  57. Tterlikkis, L., Loxsom, F. M., and Rhodes, W., 1973, Theoretical optical properties of poly-L-proline, Biopolymers 12: 675–684.CrossRefGoogle Scholar
  58. Venugopal, M. G., Ramshaw, J. A. M., Braswell, E., Zhu, D., and Brodsky, B., 1994, Electrostatic interactions in collagen-like triple helical peptides, Biochemistry 33: 7948–7956.PubMedCrossRefGoogle Scholar
  59. Venyaminov, S. Y., Baikalov, I. A., Shen, Z. M., Wu, C. S., and Yang, J. T., 1993, Circular dichroic analysis of denatured proteins: Inclusion of denatured proteins in the reference set, Anal. Biochem. 214: 17–24.PubMedCrossRefGoogle Scholar
  60. Yonath, A., and Traub, W., 1969, Polymers of tripeptides as collagen models. IV. Structure analysis of poly(L-prolyl-glycyl-L-proline), J. Mol. Biol. 43: 461–477.PubMedCrossRefGoogle Scholar
  61. Young, M. A., and Pysh, E. S., 1975, Vacuum ultraviolet circular dichroism of poly (L-proline) I and II, J. Am. Chem. Soc. 97: 5100–5103.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Rajendra S. Bhatnagar
    • 1
  • Craig A. Gough
    • 1
  1. 1.Laboratory of Connective Tissue Biochemistry, School of DentistryUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations