Circular Dichroism of Collagen and Related Polypeptides
Abstract
Circular dichroism (CD) spectra are used extensively for studying the conformation of proteins and polypeptides. The correlation of certain spectral features with well-defined peptide conformations has been used to develop computational procedures for conformational analysis (Perczel et al., 1992; Johnson, 1992; Venyaminov et al., 1993). While these procedures yield reasonable estimates of the fractions of a helix, 13 strand and sheet as well as various types of bends present in a test polypeptide, significant fractions are often ascribed “random” or “other” conformations. In these computations, conformations related to structures rich in imino peptide bonds are seldom taken into account. The imino-rich scleroprotein type I collagen and other members of the collagen gene family account for over one-third of the total protein content in the vertebrate body. The conformation of collagen is related to the polyproline II helix. There is growing evidence that many globular proteins may contain small domains with collagenlike structure (Ananthanarayanan et al., 1987; Adzhubei and Sternberg, 1993, 1994). Collagen, polyproline II, and related synthetic polypeptides exhibit CD spectra that appear to be similar to the spectra of many globular proteins in the so-called random coil conformation arising from the collapse of stabilizing interactions.
Keywords
Circular Dichroism Random Coil Globular Protein Triple Helix Positive BandPreview
Unable to display preview. Download preview PDF.
References
- Adler, A. J., Greenfield, N.J., and Fasman, G. D., 1973, Circular dichroism and optical rotatory dispersion of proteins and polypeptides, Methods Enzymol. 27D: 675–735.PubMedCrossRefGoogle Scholar
- Adzhubei, A. A., and Sternberg, M. J. E., 1993, Left-handed polyproline II helices commonly occur in globular proteins, J. Mol. Biol. 229: 472–493.PubMedCrossRefGoogle Scholar
- Adzhubei, A., A., and Sternberg, M. J. E., 1994, Conservation of polyproline II helices in homologous proteins: Implications for structure prediction by model building, Protein Sci. 3: 2395–2410.CrossRefGoogle Scholar
- Ananthanarayanan, V. S., Brahmachari, S. K., Rapaka, R. S., and Bhatnagar, R. S., 1976, Polypeptide models of collagen. Solution properties of (Gly-Pro-Sar)n and (Gly-Sar-Pro)n, Biopolymers 15: 707–716.PubMedCrossRefGoogle Scholar
- Ananthanarayanan, V. S., Soman, K. V., and Ramakrishnan, C., 1987, A novel supersecondary structure in globular proteins comprising the collagen-like helix and 13-turn, J. Mol. Biol. 198: 705–709.PubMedCrossRefGoogle Scholar
- Applequist, J.,1981, Theoretical Tr —Tr* absorption and circular dichroic spectra of helical poly(L-proline) forms I and II, Biopolymers 20:2311–2322.Google Scholar
- Bansal, M., Brahmachari, S. K., and Sasisekharan, V., 1979, Structural investigations on poly(4-hydroxyL-proline), I. Theoretical studies, Macromolecules 12: 19–23.CrossRefGoogle Scholar
- Bhatnagar, R. S., and Rapaka, R. S., 1975, Polypeptide models of collagen: Properties of (Pro-Pro-pAla)n, Biopolymers 14: 597 - 603.PubMedCrossRefGoogle Scholar
- Bhatnagar, R. S., and Rapaka, R. S., 1976, Synthetic polypeptide models of collagen: Synthesis and applications, in: Biochemistry of Collagen ( G. N. Ramachandran and A. H. Reddi, eds.), pp. 479–523, Plenum Press, New York.CrossRefGoogle Scholar
- Bhatnagar, R. S., Rapaka, R. S., and Ananthanarayanan, V. S., 1977, Conformational properties of polypeptide models of collagen, Adv. Exp. Biol. Med. 86A: 491–507.CrossRefGoogle Scholar
- Bhatnagar, R. S., Pattabiraman, N., Sorensen, K. R., Langridge, R., MacElroy, R. D., and Renugopalakrishnan, V., 1988, Inter-chain proline:proline contacts contribute tothe stability of the triple helical conformation, J. Biomol. Struct. Dynam. 6: 223–233.CrossRefGoogle Scholar
- Brahmachari, S. K., Ananthanarayanan, V. S., Rapaka, R. S., and Bhatnagar, R. S., 1978, Polypeptide models of collagen II. Solution properties of (Pro-Gly-Phe)n, Biopolymers 17: 2097–2105.CrossRefGoogle Scholar
- Brahmachari, S. K., Bansal, M., Ananthanarayanan, V. S., and Sasisekharan, V., 1979, Structural investi- gations on poly(4-hydroxy-L-proline). 2. Physicochemical studies, Macromolecules 12: 23–28.CrossRefGoogle Scholar
- Brodsky-Doyle, B., Leonard, K. R., and Reid, K. B. M., 1976, Circular dichroism and electron microscopy studies of human subcomponent Clq before and after limited proteolysis by pepsin, Biochem. J. 159: 279–286.PubMedGoogle Scholar
- Brown, F. R., III, Hopfinger, A. J., and Blout, E. R., 1972, The collagen-like triple helix to random coil transition: Experiment and theory, J. Mol. Biol. 63: 101–115.PubMedCrossRefGoogle Scholar
- Caldwell, J. W., and Applequist, J., 1984, Theoretical Tr—Tr* absorption, circular dichroic and linear dichroic spectra of collagen triple helices, Biopolymers 23:1891–1904.Google Scholar
- Chien, J. C. W., and Wise, W. B., 1975, A 13C nuclear magnetic resonance and circular dichroism study of collagen—gelatin transformation in enzyme solubilized collagen, Biochemistry 14:2786-2792. Chu, F. H., and Lukton, A., 1974, Collagenase induced changes in the circular dichroism spectrum of collagen, Biopolymers 13: 1427 - 1434.Google Scholar
- Doyle, B. B., Traub, W., Lorenzi, G. P., and Blout, E. R., 1971, Conformational investigations on the polypeptide and oligopeptides with the repeating sequence L-alanyl-L-prolyl glycine, Biochemistry 10: 3052–3057.PubMedCrossRefGoogle Scholar
- Dyson, H. J., and Wright, P. E., 1991. Defining solution conformations of small linear peptides, Annu. Rev. Biophys. Chem. 20: 519–538.CrossRefGoogle Scholar
- Gordon, M. K., and Olson, B. R., 1990, The contribution of collagenous proteins to tissue specific matrix assemblies, Curr. Opin. Cell Biol. 2: 833–838.PubMedCrossRefGoogle Scholar
- Guantieri, V., Tamburro, A. M., Cabrol, D., Broch, H., and Vasilescu, D., 1987, Conformational studies on polypeptide models of collagen. Poly(Gly-Pro-Val), poly(Gly-Pro-Met), poly(Gly-Val-Pro) and poly(Gly-Met-Pro), Int. J. Peptide Protein Res. 29: 216–230.CrossRefGoogle Scholar
- Hayashi, T., Curran-Patel, S., and Prockop, D. J., 1979, Thermal stability of the triple helix of type I procollagen and collagen. Precautions for minimizing ultraviolet damage to proteins during circular dichroism studies, Biochemistry 18: 4182–4187.CrossRefGoogle Scholar
- Helbecque, N., and Loucheux-Lefebvre, M. H., 1982, Critical chain length for polyproline-II structure formation in H-Gly-(Pro),; OH, Int. J. Peptide Protein Res. 19: 94–101.CrossRefGoogle Scholar
- Holmskov, U., Malhotra, R., Sim, R. B., and Jensenius, J. C., 1994, Collectins: Collagenous C-type lectins of the innate immune defense system, Immunol. Today 15: 67–73.PubMedCrossRefGoogle Scholar
- Hoppe, H.-J., and Reid, K. B. M., 1994, Collectins—Soluble proteins containing collagenous regions and lectin domains—And their roles in innate immunity, Protein Sci. 3: 1143–1158.PubMedCrossRefGoogle Scholar
- Ichijo, H., Hellman, U., Wernstedt, C., Gonez, L. J., Claesson-Welsh, L., Heldin, C., and Miyazono, K., 1993, Molecular cloning and characterization of ficolin, a multimeric protein with fibrinogen-and collagen-like domains, J. Biol. Chem. 268: 14505–14513.PubMedGoogle Scholar
- Jacenko, O., Olsen, B. R., and LuValle, P., 1991, Organization and regulation of collagen genes, Crit. Rev. Eukaryot. Gene Express. 1: 327–353.Google Scholar
- Jenness, D. D., Sprecher, C., and Johnson, W. C., Jr., 1976, Circular dichroism of collagen, gelatin, and poly(proline) II in the vacuum ultraviolet, Biopolymers 15: 513–521.PubMedCrossRefGoogle Scholar
- Johnson, W. C., Jr., 1990, Protein secondary structure and circular dichroism: A practical guide, Proteins 7: 205–214.PubMedCrossRefGoogle Scholar
- Johnson, W. C., Jr., 1992, Analysis of circular dichroism spectra, Methods Enzymol. 210:426-447. Kodama, T., Freeman, M., Rohrer, L., Zabrecky, J., Matsudaira, P.; Krieger, M., 1990, Type I macrophage scavenger receptor contains a-helical and collagen-like coiled-coils, Nature 343: 426–447.Google Scholar
- Krimm, S., and Mark, J. E., 1968, Conformations of polypeptides with ionized side chains of equal length, Proc. Natl. Acad. Sci. USA 60: 1122–1129.PubMedCrossRefGoogle Scholar
- Lobachev, V. M., 1987, Detection of vibron phenylalanine bands in circular dichroism spectra for collagen, Biofizika 32: 157–159.PubMedGoogle Scholar
- Long, C. G., Braswell, E., Zhu, D., Apigo, J., Baum, J., and Brodsky, B., 1993, Characterization of collagen-like peptides containing interruptions in the repeating Gly-X-Y sequence, Biochemistry 32: 11688–11695.PubMedCrossRefGoogle Scholar
- MacPhee-Quiley, K., Taylor, P., and Taylor, S., 1986, Primary structure of the catalytic subunits from two molecular forms of acetylcholinesterase: A comparison of NH2-terminal and active center sequences, J. Biol. Chem. 260: 12185–12189.Google Scholar
- Manning, M. C., and Woody, R. W., 1991, Theoretical CD studies of polypeptide helices: Examination of important electronic and geometric factors, Biopolymers 31. 569–586.PubMedCrossRefGoogle Scholar
- Mays, C., and Rosenberry, T. L., 1981, Characterization of pepsin-resistant collagen-like tail subunit fragments of 18S and 14S acetylcholinesterase from Electrophorus electricus, Biochemistry 20: 2810–2817.PubMedCrossRefGoogle Scholar
- Okuyama, K., Okuyama, S., Arnott, S., Takayanagi, M., and Kakudo, M., 1981, Crystal and molecular structure of a collagen-like polypeptide, J. Mol. Biol. 152: 427–443.PubMedCrossRefGoogle Scholar
- Paul, S. M., Bailie, R. D., and Liberti, P. A., 1978, Solvent effects on the structure of rabbit Clq, a subcomponent of the first component of the complement, J. Biol. Chem. 253: 5658–5664.PubMedGoogle Scholar
- Perczel, A., Park, K., and Fasman, G. D., 1992, Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: A practical guide, Anal. Biochem. 203: 83–93.PubMedCrossRefGoogle Scholar
- Pysh, E. S., 1974, Random-phase calculation of polyproline II circular dichroism, Biopolymers 13: 1563–1571.PubMedCrossRefGoogle Scholar
- Ramachandran, G. N., 1988, Stereochemistry of collagen, Int. J. Peptide Protein Res. 31:1-16. Ramachandran, G. N., Bansal, M., and Bhatnagar, R. S., 1973, A hypothesis on the role of hydroxyproline in stabilizing collagen structure, Biochim. Biophys. Acta 322: 166–174.Google Scholar
- Rapaka, R. S., and Bhatnagar, R. S., 1975, Polypeptide models of collagen. Synthesis of (Pro-Pro-(3Ala)~, Int. J. Peptide Protein Res. 7: 475–480.CrossRefGoogle Scholar
- Rapaka, R. S., and Bhatnagar, R. S., 1976, Polypeptide models of collagen: Synthesis of (Pro-Pro-Ala)n and (Pro-Pro-Val)„, Int. J. Peptide Protein Res. 8: 371–377.CrossRefGoogle Scholar
- Reid, K. B. M., 1979, Complete amino acid sequence of the three collagen-like regions present in subcomponent Clq of the first component of human complement, Biochem. J. 179: 367–371.PubMedGoogle Scholar
- Renugopalakrishnan, V., Druyan, M., Ramesh, S., and Bhatnagar, R. S., 1981, Molecular mechanisms in the mineralization of collagen, in: The Chemistry and Biology of Mineralized Connective Tissue-Developments in Biochemistry, vol. 22 ( A. Veis, ed.), pp. 293–298, Elsevier North Holland, New York.Google Scholar
- Renugopalakrishnan, V., Chandrakasan, G., Moore, S., Hutson, T. B., Berney, C. V., and Bhatnagar, R. S., 1989, Bound water in collagen: Evidence from Fourier transform infrared photoacoustic spectroscopic study, Macromolecules 22: 4121–4124.CrossRefGoogle Scholar
- Rippon, W. B., and Walton, A. G., 1971, Optical properties of the polyglycine II helix, Biopolymers 10: 1207–1212.PubMedCrossRefGoogle Scholar
- Ronish, E. W., and Krimm, S., 1972, Theoretical calculation of the circular dichroism of unordered polypeptide chains, Biopolymers 11. 1919–1928.PubMedCrossRefGoogle Scholar
- Rosenbloom, J., Harsch, M., and Jimenez, S. A., 1973, Hydroxyprolein content determines the denaturation temperature of chick tendon collagen, Arch. Biochem. Biophys. 158: 478–481.PubMedCrossRefGoogle Scholar
- Sasisekharan, V., and Balaji, V. N., 1979, Fourfold helical structures for polypeptides, Macromolecules 12: 28–32.CrossRefGoogle Scholar
- Schimmel, P. R., and Flory, P. J., 1968, Conformational energies and configurational statistics of copolypeptides containing L-proline, J. Mol. Biol. 34: 104–110.CrossRefGoogle Scholar
- Tamburro, A. M., Scatturin, A., and Del Pra, A., 1977, Conformational studies on sequential polypeptides. Part VII. Structural investigations on (Pro-Phe-Gly). and (Phe-Pro-Gly)„, Int. J. Peptide Protein Res. 9: 310–318.CrossRefGoogle Scholar
- Tamburro, A. M., Guantieri, V., Cabrol, D., Broch, H., and Vaslescu, D., 1984, Experimental and conformational studies on polypeptide models of collagen. Poly(Gly-Pro-Ile) and poly(Gly-Ile-Pro), Int. J. Peptide Protein Res. 24: 627–635.CrossRefGoogle Scholar
- Tanaka, T., Wada, Y., Nakamura, H., Doi, T., Imanishi, T., and Kodama, T., 1993, A synthetic model of collagen taken from bovine macrophage scavenger receptor, FEBS Lett. 334: 272–276.PubMedCrossRefGoogle Scholar
- Tiffany, M. L., and Krimm, S., 1968, Circular dichroism of poly-L-proline in an unordered conformation, Biopolymers 6: 1767–1770.PubMedCrossRefGoogle Scholar
- Tischenko, V. M., Ichtenko, A. M., Andryev, C. V., and Kajava, A. V., 1993, Thermodynamic studies of the collagen-like region of human subcomponent Clq. A water-containing structural model, J. Mol. Biol. 234: 654–660.PubMedCrossRefGoogle Scholar
- Tterlikkis, L., Loxsom, F. M., and Rhodes, W., 1973, Theoretical optical properties of poly-L-proline, Biopolymers 12: 675–684.CrossRefGoogle Scholar
- Venugopal, M. G., Ramshaw, J. A. M., Braswell, E., Zhu, D., and Brodsky, B., 1994, Electrostatic interactions in collagen-like triple helical peptides, Biochemistry 33: 7948–7956.PubMedCrossRefGoogle Scholar
- Venyaminov, S. Y., Baikalov, I. A., Shen, Z. M., Wu, C. S., and Yang, J. T., 1993, Circular dichroic analysis of denatured proteins: Inclusion of denatured proteins in the reference set, Anal. Biochem. 214: 17–24.PubMedCrossRefGoogle Scholar
- Yonath, A., and Traub, W., 1969, Polymers of tripeptides as collagen models. IV. Structure analysis of poly(L-prolyl-glycyl-L-proline), J. Mol. Biol. 43: 461–477.PubMedCrossRefGoogle Scholar
- Young, M. A., and Pysh, E. S., 1975, Vacuum ultraviolet circular dichroism of poly (L-proline) I and II, J. Am. Chem. Soc. 97: 5100–5103.PubMedCrossRefGoogle Scholar