Abstract

Carbohydrates are by far the most abundant biomolecule in the planetary biomass, largely because of the presence of the plant polysaccharides starch and cellulose (Lehninger, 1975). Carbohydrates play diverse roles in cell surface phenomena, and polysaccharides are biologically important as structural, energy storage, and gelling biopolymers. Moreover, their abundance and their rheological properties give them technological and commercial significance as well (Whistler and BeMiller, 1993).

Keywords

Hyaluronic Acid Circular Dichroism Circular Dichroism Spectrum Quadrant Rule Circular Dichroism Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, M., Kenne, L., Stenutz, R., and Widmalm, G., 1994, Synthesis of, and NMR and CD studies on, methyl 4–0-[(R)- and (S)-1-carboxyethyll-a-L-rhamnopyranoside and methyl 6–0-[(R)- and (S)1-carboxyethyl]-a-o-galactopyranoside, Carbohydr. Res. 254: 35–41.CrossRefGoogle Scholar
  2. Arndt, E. R., and Stevens, E. S., 1993, Vacuum ultraviolet circular dichroism studies of simple sugars, J. Am. Chem. Soc. 115: 7849–7853.CrossRefGoogle Scholar
  3. Arndt, E. R., and Stevens, E. S., 1994, A conformational study of agarose by vacuum uv cd, Biopolymers 34: 1527–1534.PubMedCrossRefGoogle Scholar
  4. Arnott, S., Scott, W. E., Rees, D. A., and McNab, C. G. A., 1974a, L-Carrageenan: Molecular structure and packing of polysaccharide double helices in oriented fibres of divalent cation salts, J. Mol. Biol. 90: 253–267.PubMedCrossRefGoogle Scholar
  5. Arnott, S., Fulmer, A., Scott, W. E., Dea, I. C. M., Moorhouse, R., and Rees, D. A., 1974b, The agarose double helix and its function in agarose gel structure, J. Mol. Biol. 90: 269–284.PubMedCrossRefGoogle Scholar
  6. Aubert, J.-P., Bayard, B., and Loucheux-Lefebvre, M.-H., 1976, Circular dichroism studies of some oligosaccharides containing 2-acetamido-2-deoxy-D-glucopyranose and D-mannopyranose residues, Carbohydr. Res. 51: 263–268.PubMedCrossRefGoogle Scholar
  7. Balcerski, J. S., Pysh (Stevens), E. S., Chen, G. C., and Yang, J. T., 1975, Optical rotatory dispersion and vacuum ultraviolet circular dichroism of a polysaccharide. L-Carrageenan, J. Am. Chem. Soc. 97: 6274–6275.Google Scholar
  8. Bertanzon, F., Stevens, E. S., Toniolo, C., and Bonora, G. M., 1981, Interaction of the three main components of clupeine with glycosaminoglycans, Int. J. Peptide Protein Res. 18: 312–317.CrossRefGoogle Scholar
  9. Bertucci, C., Lazzaroni, R., Salvadori, P., and Johnson, W. C., Jr., 1981, Far-u.v. circular dichroism spectra of (S)-(+)-1,2,2-trimethylpropyl ethyl ether: Solvent effects, J. Chem. Soc. Chem. Commun. 1981: 590–591.CrossRefGoogle Scholar
  10. Bertucci, C., Lazzaroni, R., and Johnson, W. C., Jr., 1984, Far-u.v. circular dichroism spectra at 145–220 nm, of some cyclic ethers as model compounds for carbohydrates, Carbohydr. Res. 133: 152–156.CrossRefGoogle Scholar
  11. Bertucci, C., Salvadori, P., Zullino, G., Pini, D., and Johnson, W. C., Jr., 1986, Circular dichroism spectra of some model compounds related to D-glucopyranose and D-galactopyranose, Carbohydr. Res. 149: 299–307.PubMedCrossRefGoogle Scholar
  12. Bittiger, H., and Keilich, G., 1969, Optical rotatory dispersion and circular dichroism of carbanilyl polysaccharides, Biopolymers 7: 539–556.CrossRefGoogle Scholar
  13. Brant, D. A., 1980, Conformation and behavior of polysaccharides in solution, in: Carbohydrates: Structure and Function ( J. Preiss, ed.), pp. 425–472, Academic Press, New York.Google Scholar
  14. Braud, C., Vert, M., and Granger, P., 1988, Ca’-heparin interactions: Effects of counterions on n.m.r. and c.d. of fractionated heparin and related compounds, Int. J. Biol. Macromol. 10: 2–8.CrossRefGoogle Scholar
  15. Bryce, T. A., McKinnon, A. A., Morris, E. R., Rees, D. A., and Thom, D., 1974, Chain conformations in the sol—gel transitions for polysaccharide systems, and their characterization by spectroscopic methods, Faraday Discuss. Chem. Soc. 57: 221–229.CrossRefGoogle Scholar
  16. Buffington, L. A., and Stevens, E. S., 1979, Far-ultraviolet circular dichroism of solutions, gels, and films of chitin, J. Am. Chem. Soc. 101: 5159–5162.CrossRefGoogle Scholar
  17. Buffington, L. A., Pysh (Stevens), E. S., Chakrabarti, B., and Balazs, E. A., 1977, Far-ultraviolet circular dichroism of N-acetylglucosamine, glucuronic acid, and hyaluronic acid, J. Am. Chem. Soc. 99: 1730–1734.Google Scholar
  18. Buffington, L. A., Stevens, E. S., Morris, E. R., and Rees, D. A., 1980, Vacuum ultraviolet circular dichroism of galactomannans, Int. J. Biol. Macromol. 2: 199–203.CrossRefGoogle Scholar
  19. Burton, B. A., and Brant, D. A., 1983, Comparative flexibility, extension, and conformation of some simple polysaccharide chains, Biopolymers 22: 1769–1792.CrossRefGoogle Scholar
  20. Bush, C. A., 1977, Far ultraviolet circular dichroism of oligosaccharides, in: Excited States in Organic Chemistry and Biochemistry ( B. Pullman and N. Goldblum, eds.), pp. 209–220, Reidel, Dordrecht.Google Scholar
  21. Bush, C. A., and Duben, A., 1978, Circular dichroism and the conformation of sugars having vicinal diacylamino substituents, J. Am. Chem. Soc. 100: 4987–4990.CrossRefGoogle Scholar
  22. Bush, C. A., and Ralapati, S., 1981, Vacuum uv circular dichroism spectroscopy of acetamido sugars, in: Solution Properties of Polysaccharides, American Chemical Society Symposum Series No. 150 ( D. A. Brandt, ed.), pp. 293–302, American Chemical Society, Washington, DC.CrossRefGoogle Scholar
  23. Bush, C. A., Duben, A., and Ralapati, S., 1980, Conformation of the glycopeptide linkage in asparagine-linked glycoproteins, Biochemistry 19: 501–504.PubMedCrossRefGoogle Scholar
  24. Bush, C. A., Feeney, R. E., Oscegai, D. T., Ralapati, S., and Yeh, Y., 1981, Antifreeze glycoprotein. Conformational model based on vacuum ultraviolet circular dichroism data, Int. J. Peptide Protem Res. 17: 125–129.CrossRefGoogle Scholar
  25. Bush, C. A., Dua, V. K., Ralapati, S., Warren, C. D., Spik, G., Strecker, G., and Montreuil, J., 1982, Conformation of the complex oligosaccharides of glycoproteins. A vacuum ultraviolet circular dichroism study, J. Biol. Chem. 257: 8199–8204.PubMedGoogle Scholar
  26. Bush, C. A., Ralapati, S., Matson, G. M., Yamasaki, R. D., Osuga, D. T., Yeh, Y., and Feeney, F. E., 1984, Conformation of the antifreeze glycoprotein of polar fish, Arch. Biochem. Biophys. 232: 624–631.PubMedCrossRefGoogle Scholar
  27. Bystricky, S., Malovikova, A., and Sticzay, T., 1990, Interaction of alginates and pectins with cationic polypeptides, Carbohydr. Polym. 13: 283–294.CrossRefGoogle Scholar
  28. Cagas, P., Kaluarachchi, K., and Bush, C. A., 1991, 2D NOESY simulations of amide protons in acetamido sugars, J. Am. Chem. Soc. 113: 6815–6822.Google Scholar
  29. Cesàro, A., Ciana, A., Delben, F., Manzini, G., and Paoletti, S., 1982, Physicochemical properties of pectic acid. I. Thermodynamic evidence of a pH-induced conformational transition in aqueous solution, Biopolymers 21: 431–449.CrossRefGoogle Scholar
  30. Cesàro, A., Liut, G., Bertocchi, C., Navarini, L., and Urbani, R., 1990, Physicochemical properties of the extracellular polysaccharide from Cyanospira capsulata, Int. J. Biol. Macromol. 12: 79–84.PubMedCrossRefGoogle Scholar
  31. Chakrabarti, B., and Balazs, E. A., 1973, Optical properties of hyaluronic acid. Ultraviolet circular dichroism and optical rotatory dispersion, J. Mol. Biol. 78: 135–141.PubMedCrossRefGoogle Scholar
  32. Chakrabarti, B., and Park, J. W., 1980, Glycosaminoglycans: Structure and interaction, in: Critical Reviews in Biochemistry, Vol. 8(3) ( G. D. Fasman, ed.), pp. 225–313, CRC Press, Boca Raton, FL.Google Scholar
  33. Chakrabarti, B., Figueroa, N., and Park, J. W., 1979, Can hyaluronic acid exist in solution as a helix? in: Proc. 4th Int. Symp. Glycoconjugates ( J. D. Gregory and J. W. Jeanloz, eds.), pp. 119–124, Academic Press, New York.Google Scholar
  34. Christensen, B. E., Knudsen, K. D., Smidsrod, O., Kitamura, S., and Takeo, K., 1993, Temperature-induced conformational transition in xanthans with partially hydrolyzed side chains, Biopolymers 33: 151–161.PubMedCrossRefGoogle Scholar
  35. Chung, M. C. M., and Ellerton, N. F., 1976, Viscosity at low shear and circular dichroism studies of heparin, Biopolymers 15: 1409–1423.PubMedCrossRefGoogle Scholar
  36. Coduti, P. L., Gordon, E. C., and Bush, C. A., 1977, Circular dichroism of oligosaccharides containing N-acetyl amino sugars, Anal. Biochem. 78: 9–20.PubMedCrossRefGoogle Scholar
  37. Cohen, A. H., and Stevens, E. S., 1987, Calculated circular dichroism of the n-Tr* transition in Nacetylglucosamines, J. Phys. Chem. 91: 4466–4470.CrossRefGoogle Scholar
  38. Cowman, M. K., Balazs, E. A., Bergmann, C. W., and Meyer, K., 1981, Preparation and circular dichroism analysis of sodium hyaluronate oligosaccharides and chondroitin, Biochemistry 20: 1379–1385.PubMedCrossRefGoogle Scholar
  39. Cowman, M. K., Bush, C. A., and Balazs, E. A., 1983, Vacuum-ultraviolet circular dichroism of sodium hyaluronate oligosaccharides and polymer segments, Biopolymers 22: 1319–1324.PubMedCrossRefGoogle Scholar
  40. Crescenzi, V., Dentini, M., Coviello, T., and Rizzo, R., 1986, Comparative analysis of the behavior of gellan gum (S-60) and welan gum (S-130) in dilute aqueous solution, Carbohydr. Res. 149: 425–432.CrossRefGoogle Scholar
  41. Crescenzi, V., Dentini, M., and Dea, I. C. M., 1987, The influence of side-chains on the dilute-solution properties of three structurally related, bacterial anionic polysaccharides, Carbohydr. Res. 160: 283–302.CrossRefGoogle Scholar
  42. Cziner, D. G., Stevens, E. S., Morris, E. R., and Rees, D. A., 1986, Vacuum ultraviolet circular dichroism of dermatan sulfate: Iduronate ring geometry in solution and solid state, J. Am. Chem. Soc. 108: 3790–3795.CrossRefGoogle Scholar
  43. Dentini, M., Crescenzi, V., and Blasi, D., 1984, Conformational properties of xanthan derivatives in dilute aqueous solution, Int. J. Biol. Macromol. 6: 93–98.CrossRefGoogle Scholar
  44. Dickinson, H. R., and Bush, C. A., 1975, Circular dichroism of oligosaccharides containing neuraminic acid, Biochemistry 14: 2299–2304.PubMedCrossRefGoogle Scholar
  45. Dickinson, H. R., Coduti, P. L., and Bush, C. A., 1977, Determination of the linkage of disaccharides containing a 2-acetamido-2-deoxy sugar unit by solvent effects in circular dichroism, Carbohydr. Res. 56: 249–257.PubMedCrossRefGoogle Scholar
  46. Domard, A., 1987a, Determination of N-acetyl content in chitosan samples by c.d. measurements, Mt. J. Biol. Macromol. 9: 333–336.CrossRefGoogle Scholar
  47. Domard, A., 1987b, pH and c.d. measurements on a fully deacetylated chitosan: Application to Cu“—polymer interactions, Int. J. Biol. Macromol. 9: 98–104.Google Scholar
  48. Duben, A., and Bush, C. A., 1980, Vacuum ultraviolet circular dichroism spectrometer and its application to N-acetylamino saccharides, Anal. Chem. 52: 635–638.PubMedCrossRefGoogle Scholar
  49. Duda, C. A., and Stevens, E. S., 1990a, Lactose conformation in aqueous solution from optical rotation, Carbohydr. Res. 206: 347–351.CrossRefGoogle Scholar
  50. Duda, C. A., and Stevens, E. S., 19906, Trehalose conformation in aqueous solution from optical rotation, J. Am. Chem. Soc. 112: 7406.Google Scholar
  51. Duda, C. A., and Stevens, E. S., 1991, Solution conformation of laminaribioside and (1–3)43-D-glucan from optical rotation, Biopolymers 31: 1379–1385.CrossRefGoogle Scholar
  52. Duda, C. A., and Stevens, E. S.,1992, Solution conformation of (1— 4)-ß-D-mannan from optical rotation, Carbohydr. Res. 228: 333–338.Google Scholar
  53. Duda, C. A., and Stevens, E. S., 1993, Solution conformations of 13,13-trehalose and its C-disaccharide analog from optical rotation, J. Am. Chem. Soc. 115: 8487–8488.CrossRefGoogle Scholar
  54. Duda, C. A., Stevens, E. S., and Reid, J. S. G., 1991, Conformational properties of (3-(1–4)-D-galactan determined from chiroptical measurements, Macromolecules 24: 431–435.CrossRefGoogle Scholar
  55. Eyring, E. J., and Yang, J. T., 1968, Viscosity and optical activity of chondroitin sulfate C, Biopolymers 6: 691–701.PubMedCrossRefGoogle Scholar
  56. Fidanza, M., Dentini, M., Crescenzi, V., and Del Vecchio, P., 1989, Influence of charged groups on the conformational stability of succinoglycan in dilute aqueous solution, Int. J. Biol. Macromol. 11: 372–376.PubMedCrossRefGoogle Scholar
  57. Figueroa, N., and Chakrabarti, B., 1978, Circular dichroism studies of copper (I1)—hyaluronic acid complex in relation to conformation of the polymer, Biopolymers 17: 2415–2426.CrossRefGoogle Scholar
  58. Filira, F., Biondi, L., Scolaro, B., Foffani, M. T., Mammi, S., Peggion, E., and Rocchi, R., 1990, Solid-phase synthetic and conformation of sequential glycosylated polytripeptide sequences related to antifreeze glycoproteins, Int. J. Biol. Macromol. 12: 41–49.PubMedCrossRefGoogle Scholar
  59. Foord, S. A., and Atkins, E. D. T., 1989, New X-ray diffraction results from agarose: Extended single helix structures and implications for gelation mechanism, Biopolymers 28: 1345–1365.CrossRefGoogle Scholar
  60. French, A. D., and Brady, J. W., eds., 1990, Computer Modeling of Carbohydrate Molecules, ACS Symposium Series No. 430, American Chemical Society, Washington, DC.Google Scholar
  61. Fujihara, M., and Nagumo, T., 1993, An influence of the structure of alginate on the chemotactic activity of macrophages and the antitumor activity, Carbohydr. Res. 243: 211–216.PubMedCrossRefGoogle Scholar
  62. Gekko, K., 1979, Circular dichroism study on polyelectrolytic properties of carboxymethyldextran, Biopolymers 18: 1989–2003.CrossRefGoogle Scholar
  63. Gidley, M. J., Morris, E. R., Murray, E. J., Powell, D. A., and Rees, D. A., 1980, Evidence for two mechanisms of interchain association in calcium pectate gels, Int. J. Biol. Macromol. 2: 332–334.CrossRefGoogle Scholar
  64. Grant, G. T., Morris, E. R., Rees, D. A., Smith, P. J. C., and Thom, D., 1973, Biological interactions between polysaccharides and divalent cations. Egg-box model, FEBS Lett. 32: 195.CrossRefGoogle Scholar
  65. Harada, N., and Nakaniski, K., 1983, Circular Dichroism Spectroscopy: Exciton Coupling in Organic Stereo Chemistry, University Science Books, Mill Valley, CA.Google Scholar
  66. Hargreaves, M. K., and Marshall, D. L., 1973, The chiroptical properties of ethylene dithioacetals and diethyl dithioacetals of some aldoses, Carbohydr. Res. 29: 339–344.CrossRefGoogle Scholar
  67. Herschlag, D., Stevens, E. S., and Gander, J. E., 1983, Galactofuranosyl-containing glycopeptide of Penicilliuim charlesii. Vacuum ultraviolet circular dichroism, Int. J. Peptide Protein Res. 22: 16–20.CrossRefGoogle Scholar
  68. Hirano, S., Kinugawa, J., Nishioka, A., and Iino, H., 1987, Transformation of triplet induced Cotton effects of the methylene blue complexes of some sulphate derivatives of chitosan, Int. J. Biol. Macromol. 9: 11–14.CrossRefGoogle Scholar
  69. Hollosi, M., Perczel, A., and Fasman, G. D., 1990, Cooperativity of carbohydrate moiety orientation and [3-turn stability is determined by intramolecular hydrogen bonds in protected glycopeptide models, Biopolymers 29: 1549–1564.PubMedCrossRefGoogle Scholar
  70. Ikemoto, N., Lo, L.-C., Kim, O. K., Berova, M., and Nakanishi, K., 1993, Oligosaccharide microscale analysis by circular dichroic spectroscopy: Reference spectra for chromophoric D-fructofuranoside derivatives, Carbohydr. Res. 239: 11–33.PubMedCrossRefGoogle Scholar
  71. Jeffrey, G. A., and Nanni, R., 1985, The crystal structure of anyhdrous a,a-trehalose at —150°, Carbohydr. Res. 137: 21–30.PubMedCrossRefGoogle Scholar
  72. Jennings, H. J., and Williams, R. E., 1976, The circular dichroism spectra of several sialic acid-containing polysaccharides isolated from Neisseria meningitidis, Carbohydr. Res. 50: 257–265.PubMedCrossRefGoogle Scholar
  73. Jennings, H. J., Roy, R., and Williams, R. E., 1984, Chemical modification and serological properties of the 3-deoxy-a-D-manno-2-octulosonic acid-containing polysaccharide from Escherichia coli LP 1092, Carbohydr. Res. 129: 243–255.PubMedCrossRefGoogle Scholar
  74. Jimenez-Barbero, J, Bouffar-Roupe, C., Rochas, C., and Perez, S., 1989, Modelling studies of solvent effects on the conformational stability of agarobiose and neoagarobiose and their relationship to agarose, Int. J. Biol. Macromol. 11:265–272.CrossRefGoogle Scholar
  75. Johnson, W. C., Jr., 1987, The circular dichroism of carbohydrates, in: Advances in Carbohydrate Chemistry and Biochemistry, Vol. 45 ( R. S. Tipson and D. Horton, eds.), pp. 73–124, Academic Press, New York.Google Scholar
  76. Kabat, E. A., Lloyd, K. O., and Beychok, S., 1969, Optical activity and conformation of carbohydrates. II. Optical rotary dispersion and circular dichroism studies on immunochemically reactive oligoand polysaccharides containing amino sugars and their derivatives, Biochemistry 8: 747–756.PubMedCrossRefGoogle Scholar
  77. Kaluarachchi, K., and Bush, C. A., 1989, Determination of the absolute configuration of the sugar residues of complex polysaccharides by circular dichroism, Anal. Biochem. 179: 209–215.PubMedCrossRefGoogle Scholar
  78. Keilich, G., Bossmer, R., Eschenfelder, V., and Holmquist, L., 1975, Circular dichroism studies on a-and 13-ketosides of 5-acetamido-3,5-dideoxy-D-glycero-D-galacto-nonulopyranosonic acid (N-acetylneuraminic acid) and of some of its derivatives, Carbohydr. Res. 40: 255–262.PubMedCrossRefGoogle Scholar
  79. Keilich, G., Roppel, J., and Mayer, H., 1976, Characterization of a diaminohexose (2,3-diamino-2,3dideoxy-D-glucose from Rhodopseudomonas viridis lipopolysaccharides by circular dichroism, Carbohydr. Res. 51: 129–134.PubMedCrossRefGoogle Scholar
  80. Kroon-Batenburg, L. M. J., Kroon, J., Leeflang, B. R., and Vliegenhart, J. F. G., 1993, Conformational analysis of methyl cellobioside by ROESY NMR spectroscopy and MD simulations in combination with the CROSREL method, Carbohydr. Res. 245: 21–42.PubMedCrossRefGoogle Scholar
  81. Lehninger, A. L., 1975, Biochemistry, Worth Publishing, New York.Google Scholar
  82. Lewis, D. G., and Johnson, W. C., Jr., 1978, Optical properties of sugars. VI. Circular dichroism of amylose and glucose oligomers, Biopolymers 17: 1439–1449.CrossRefGoogle Scholar
  83. Liang, J. N., and Stevens, E. S., 1982, Vacuum ultraviolet circular dichroism of poly(galacturonic acid), sodium polygalacturonate and calcium polygalacturonate, Int. J. Biol. Macromol. 4: 316–317.CrossRefGoogle Scholar
  84. Liang, J. N., Stevens, E. S., Morris, E. R., and Rees, D. A., 1979, Spectroscopic origin of conformation-sensitive contributions to polysaccharide optical activity: Vacuum ultraviolet circular dichroism of agarose, Biopolymers 18: 327–333.CrossRefGoogle Scholar
  85. Liang, J. N., Stevens, E. S., Frangou, S. A., Morris, E. R., and Rees, D. A., 1980, Cation-specific vacuum ultraviolet circular dichroism behavior of alginate solutions, gels and solid films, Int. J. Biol. Macromol. 2: 204–208.CrossRefGoogle Scholar
  86. Lin, J. W.-P., and Schuerch, C., 1972, Synthesis and properties of stereoregular 2,3,4-tri-O-acetyl-(1—*6)a-D-gluco-, -manno-, and -galactopyranans, J. Polym. Sci. Polym. Chem. 10: 2045–2060.CrossRefGoogle Scholar
  87. Listowsky, I., and Englard, S., 1968, Characterization of the far-ultraviolet optically active absorption bands of sugars by circular dichroism, Biochem. Biophys. Res. Commun. 30: 329–332.PubMedCrossRefGoogle Scholar
  88. Listowsky, I., Englard, S., and Avigad, G., 1969, An analysis of the circular dichroism spectra of uronic acids, Biochemistry 8: 1781–1785.PubMedCrossRefGoogle Scholar
  89. Listowsky, I., Avigad, G., and Englard, S., 1970, Conformational aspects of muramic acids. Analysis based on circular dichroism measurements, Biochemistry 9: 2186–2189.PubMedCrossRefGoogle Scholar
  90. Listowsky, I., Englard, S., and Avigad, G., 1972, Conformational aspects of acidic sugars: Circular dichroism studies, Trans. N.Y. Acad. Sci. 34: 218–226.PubMedCrossRefGoogle Scholar
  91. Lloyd, K. O., Beychok, S., and Kabat, E. A., 1967, Immunochemical studies on blood groups. XXXVII. The structures of difucosyl and other oligosaccharides produced by alkaline degradation of blood groups A, B, and H substances. Optical rotatory dispersion and circular dichroism spectra of these oligosaccharides, Biochemistry 6: 1448–1454.CrossRefGoogle Scholar
  92. Lloyd, K. O., Beychok, S., and Kabat, E. A., 1968, Immunochemical studies of blood groups. XXXIX. Optical rotatory dispersion and circular dichroism spectra of oligosaccharides from blood-group Lewis“ substance, Biochemistry 7: 3762–3765.PubMedCrossRefGoogle Scholar
  93. Mackie, W., Perez, S., Rizzo, R., Taravel, F., and Vignon, M., 1983, Aspects of the conformation of polygalacturonate in the solid state and in solution, Int. J. Biol. Macromol. 5: 329–341.CrossRefGoogle Scholar
  94. Malovikova, A., Rinaudo, M., and Milas, M., 1994, Comparative interactions of magnesium and calcium counterions with polygalacturonic acid, Biopolymers 34: 1059–1064.CrossRefGoogle Scholar
  95. Melton, L. D., Morris, E. R., Rees, D. A., and Thom, D., 1979, Conformation and circular dichroism of oligosaccharides and model glycosides containing neuraminic acid (5-acetamido-3,5-dideoxy-Dglycero-D-galacto-nonulopyranosonic acid) residues, J. Chem. Soc. Perkin Trans. II 1979: 10–17.CrossRefGoogle Scholar
  96. Merle, J.-P., and Sarko, A., 1973, Far ultraviolet optical activity of saccharide derivatives. Part IV. 2,3,4tri-O-benzyl-(1—6)-a-n-glucopyranan,-a-D-mannopyranan, and -a-D-galactopyranan, Carbohydr. Res. 30: 390–394.CrossRefGoogle Scholar
  97. Morris, E. R., 1994, Chiroptical methods, in: Physical Techniques for the Study of Food Biopolymers ( S. B. Ross-Murphy, ed.), pp. 15–64, Elsevier-Applied Science, New York.CrossRefGoogle Scholar
  98. Morris, E. R., Rees, D. A., Sanderson, G. R., and Thom, D., 1975, Conformation and circular dichroism of uronic acid residues in glycosides and polysaccharides, J. Chem. Soc. Perkin Trans. 2 1975: 1418–1425.Google Scholar
  99. Morris, E. R., Rees, D. A., Young, G., Walkinshaw, M. D., and Darke, A., 1977, Order–disorder transition for a bacterial polysaccharide in solution. A role for polysaccharide conformation in recognition between Xanthomonas pathogen and its plant host, J. Mol. Biol. 110: 1–16.PubMedCrossRefGoogle Scholar
  100. Morris, E. R., Rees, D. A., Thom, D., and Boyd, J., 1978, Chiroptical and stoichiometric evidence of a specific, primary dimerisation process in alginate gelation, Carbohydr. Res. 66: 145–154.CrossRefGoogle Scholar
  101. Morris, E. R., Rees, D. A., and Thom, D., 1980a, Characterisation of alginate composition and block-structure by circular dichroism, Carbohydr. Res. 81: 305–314.CrossRefGoogle Scholar
  102. Morris, E. R., Rees, D. A., Robinson, G., and Young, G. A., 1980b, Competitive inhibition of interchain interactions in polysaccharide systems, J. Mol. Biol. 138: 363–374.PubMedCrossRefGoogle Scholar
  103. Morris, E. R., Gidley, M. J., Murray, E. J., Powell, D. A., and Rees, D. A., 1980c, Characterization of pectin gelation under conditions of low water activity, by circular dichroism, competitive inhibition and mechanical properties, Int. J. Biol. Macromol. 2: 327–330.CrossRefGoogle Scholar
  104. Morris, E. R., Rees, D. A., and Young, G., 1982a, Chiroptical characterization of polysaccharide secondary structures in the presence of interfering chromophores: Chain conformation of inter-junction sequences in calcium alginate gels, Carbohydr. Res. 108: 181–195.CrossRefGoogle Scholar
  105. Morris, E. R., Powell, D. A., Gidley, M. J., and Rees, D. A., 1982b, Conformations and interactions of pectins. I. Polymorphism between gel and solid states of calcium polygalacturonate, J. Mol. Biol. 155: 507–516.PubMedCrossRefGoogle Scholar
  106. Morris, V. J., Brownsey, G. J., Cairns, P., Chilvers, G. R., and Miles, M. J., 1989, Molecular origins of acetan solution properties, Int. J. Biol. Macromol. 11: 326–328.PubMedCrossRefGoogle Scholar
  107. Mukherjee, S., Marchessault, R. H., and Sarko, A., 1972a, Far-ultraviolet optical activity of saccharide derivatives. I. Xylan and cellulose acetates, Biopolymers 11: 291–301.CrossRefGoogle Scholar
  108. Mukherjee, S., Sarko, A., and Marchessault, R. H., 1972b, Far-ultraviolet optical activity of saccharide derivatives. II. Dextran, amylose, and mycodextran acetates; dextran and amylose xanthates, Bio-polymers 11: 303–314.Google Scholar
  109. Mulloy, B., Forster, M. J., Jones, C., Drake, A. F., Johnson, E. A., and Davies, D. B., 1994, The effect of variation of substitution on the solution conformation of heparin: A spectroscopic and modeling study, Carbohydr. Res. 255: 1–26.PubMedCrossRefGoogle Scholar
  110. Nakanishi, K., Kuroyangi, M., Nambu, E., Oltz, E. M., Takeda, R., Verdine, G. L., and Zask, A., 1984, Recent applications of circular dichroism to structural problems, especially oligosaccharide structures, Pure Appl. Chem. 56: 1031–1048.CrossRefGoogle Scholar
  111. Nelson, R. G., and Johnson, W. C., Jr., 1976, Optical properties of sugars. 4. Circular dichroism of methyl aldopyranosides, J. Am. Chem. Soc. 98: 4296–4301.PubMedCrossRefGoogle Scholar
  112. Papageorgiou, M., Kasapis, S., and Gothard, M. G., 1994, Structural and textural properties of calcium-induced, hot-made alginate gels, Carbohydr. Polym. 24: 199–207.CrossRefGoogle Scholar
  113. Park, J. W., and Chakrabarti, B., 1977, Solvent induced changes in conformation of hyaluronic acid, Biopolymers 16: 2807–2809.CrossRefGoogle Scholar
  114. Park, J. W., and Chakrabarti, B., 1978a, Optical characteristics of carboxyl group in relation to the circular dichroic properties and dissociation constants of glycosaminoglycans, Biochim. Biophys. Acta 544: 667–675.PubMedCrossRefGoogle Scholar
  115. Park, J. W., and Chakrabarti, B., 1978b, Optical properties and viscosity of hyaluronic acid in mixed solvents: Evidence of conformational transition, Biopolymers 17: 1323–1333.CrossRefGoogle Scholar
  116. Park, J. W., and Chakrabarti, B., 1978c, Conformational transition of hyaluronic acid. Carboxylic group participation and thermal effect, Biochim. Biophys. Acta 541: 263–269.PubMedCrossRefGoogle Scholar
  117. Perczel, A., Kollat, E., Hollosi, M., and Fasman, G. D., 1993, Synthesis and conformational analysis of Nglycopeptides. II. CD, molecular dynamics, and nmr spectroscopic studies on linear N-glycopeptides, Biopolymers 33: 665–685.PubMedCrossRefGoogle Scholar
  118. Pfannemüller, B., and Berg, A., 1979, Chemical synthesis of branched polysaccharides, 8. Comparative studies on derivatives of amylose and cellulose with different substituents at C-6 by optical rotatory dispersion and circular dichroism, Makromol Chem. 180: 1201–1213.CrossRefGoogle Scholar
  119. Pfannemüller, B., and Ziegast, G., 1981, Properties of aqueous amylose and amylose—iodine solutions, in: Solution Properties of Polysaccharides, American Chemical Society Symposium Series No. 150 ( D. A. Brant, ed.), pp. 529–548, American Chemical Society, Washington, DC.CrossRefGoogle Scholar
  120. Plaschina, I. G., Braudo, E. E., and Tolstoguzov, V. B., 1978, Circular dichroism studies of pectin solutions, Carbohydr. Res. 60: 1–8.CrossRefGoogle Scholar
  121. Powell, D. A., Morris, E. R., Gidley, M. J., and Rees, D. A., 1982, Conformations and interactions of pectins. II. Influence of residue sequence on chain association in calcium pectate gels, J. Mol. Biol. 155: 517–531.PubMedCrossRefGoogle Scholar
  122. Ravanat, G., and Rinaudo, M., 1980, Investigation on oligo-and polygalacturonic acids by potentiometry and circular dichroism, Biopolymers 19: 2209–2222.CrossRefGoogle Scholar
  123. Reddy, G. P., Chang, C.-C., and Bush, C. A., 1993, Determination by heteronuclear nmr spectroscopy of the complete structure of the cell wall polysaccharide of Streptococcus sanguis strain K103, Anal. Chem. 65: 913–921.PubMedCrossRefGoogle Scholar
  124. Rees, D. A., Morris, E. R., Thom, D., and Madden, J. K., 1982, Shapes and interactions of carbohydrate chains, in: The Polysaccharides, Vol. 1 ( G. O. Aspinall, ed.), pp. 195–290, Academic Press, New York.Google Scholar
  125. Robin, M. B., 1974, Higher Excited States of Polyatomic Molecules, Vol. 1, Academic Press, New York.Google Scholar
  126. Rohrer, D. C., Sarko, A., Blum, T. L., and Lee, Y. M., 1980, The structure of gentiobiose, Acta Crystallogr. Sect. B 36: 650–654.CrossRefGoogle Scholar
  127. Sallam, M. A. E., 1984, Correlation between the circular dichroism spectra of C-nucleoside, 1,2,3osotriazole analogs and their anomeric configuration, Carbohydr. Res. 129: 33–41.CrossRefGoogle Scholar
  128. Sallam, M. A. E., and El Shemany, H. A., 1994, 1-Phenyl-3-(a-and ß)-threofuranosyl-pyrazolo [3,4-b]quinoxaline C-nucleoside analogues. Synthesis and anomeric configuration assignment by CD and 1H NMR spectroscopy, Carbohydr. Res. 261: 327–334.Google Scholar
  129. Sarko, A., and Fischer, C., 1973, Far ultraviolet optical activity of saccharide derivatives. III. Amylose triacetate in the solid state, Biopolymers 12: 2189–2193.CrossRefGoogle Scholar
  130. Sathyanarayana, B. K., and Stevens, E. S., 1988, Semiempirical, sodium-D molar rotations of pyranosides and other carbohydrate model compounds, Carbohydr. Res. 181: 223–228.PubMedCrossRefGoogle Scholar
  131. Schafer, S. E., and Stevens, E. S., 1995, A reexamination of the double-helix model for agarose gels using optical rotation, Biopolymers 36: 103–108.CrossRefGoogle Scholar
  132. Seale, R., Morris, E. R., and Rees, D. A., 1982, Interactions of alginates with univalent cations, Carbohydr. Res. 110: 101–112.CrossRefGoogle Scholar
  133. Shen, T. Y., Li, J. P., Dorn, C. P., Ebel, D., Bugianesi, R., and Fecher, R., 1972, Bioactive carbohydrate derivatives, Carbohydr. Res. 23: 87–102.CrossRefGoogle Scholar
  134. Snyder, P. A., and Johnson, W. C., Jr., 1978, Circular dichroism of l-borneol, J. Am. Chem. Soc. 100: 2939–2944.CrossRefGoogle Scholar
  135. Staskus, P. W., and Johnson, W. C., Jr., 1988a, Conformational transition of hyaluronic acid in aqueous-organic solvent monitored by vacuum ultraviolet circular dichroism, Biochemistry 27: 1522–1527.PubMedCrossRefGoogle Scholar
  136. Staskus, P. W., and Johnson, W. C., Jr., 1988b, Double-stranded structure for hyaluronic acid in ethanol- aqueous solution as revealed by circular dichroism of oligomers, Biochemistry 27: 1528–1534.PubMedCrossRefGoogle Scholar
  137. Stevens, E. S., 1985, Vacuum ultraviolet circular dichroism studies of peptides and saccharides, in: Applications of Circularly Polarized Radiation Using Synchrotron and Ordinary Sources ( F. Allen and C. Bustamante, eds.), pp. 173–189, Plenum Press, New York.Google Scholar
  138. Stevens, E. S., 1986, Vacuum uv circular dichroism of polysaccharides, Photochem. Photobiol. 44: 287–293.PubMedCrossRefGoogle Scholar
  139. Stevens, E. S., 1987, Vacuum uv circular dichroism, in: Industrial Polysaccharides: Proceedings of the Conference on Recent Developments in Industrial Polysaccharides ( S. S. Stivala, V. Crescenzi, and I. C. M. Dea, eds.), pp. 255–265, Gordon & Breach, New York.Google Scholar
  140. Stevens, E. S., 1992, Solution conformation of maltose from optical rotation: A procedure for evaluating carbohydrate force fields, Biopolymers 32: 1571–1579.CrossRefGoogle Scholar
  141. Stevens, E. S., 1994a, The potential energy surface of methyl 3-O-(a-D-mannopyranosyl)-a-D-mannopyranoside in aqueous solution: Conclusions derived from optical rotation, Biopolymers 34: 1395–1401.CrossRefGoogle Scholar
  142. Stevens, E. S., 1994b, The potential energy surface of methyl 2-O-(a-o-mannopyranosyl)-a-o-mannopyranoside in aqueous solution: Conclusions derived from optical rotation, Biopolymers 34: 1403–1407.CrossRefGoogle Scholar
  143. Stevens, E. S., and Duda, C. A., 1991, Solution conformation of sucrose from optical rotation, J. Am. Chem. Soc. 113: 8622–8627.CrossRefGoogle Scholar
  144. Stevens, E. S., and Lin, B., 1987, Vacuum ultraviolet circular dichroism of keratan sulfate, Biochim. Biophys. Acta 924: 99–103.PubMedCrossRefGoogle Scholar
  145. Stevens, E. S., and Morris, E. R., 1990, The vacuum ultraviolet circular dichroism of carrageenans, Carbohydr. Polym. 12: 219–224.CrossRefGoogle Scholar
  146. Stevens, E. S., and Sathyanarayana, B. K., 1987, A semiempirical theory of the optical activity of saccharides, Carbohydr. Res. 166: 181–193.PubMedCrossRefGoogle Scholar
  147. Stevens, E. S., and Sathyanarayana, B. K., 1989, Potential energy surfaces of cellobiose and maltose in aqueous solution: A new treatment of disaccharide optical rotation, J. Am. Chem. Soc. 111: 4149–4154.CrossRefGoogle Scholar
  148. Stevens, E. S., Morris, E. R., Rees, D. A., and Sutherland, J. C., 1985, Synchrotron light source applied to measuring the vacuum ultraviolet circular dichroism of heparin, J. Am. Chem. Soc. 107: 2982–2983.CrossRefGoogle Scholar
  149. Stipanovic, A. J., and Stevens, E. S., 1980, Vacuum ultraviolet circular dichroism of (1–6)-ß-o-glucan, Int. J. Biol. Macromol. 2: 209–212.CrossRefGoogle Scholar
  150. Stipanovic, A. J., and Stevens, E. S., 1981a, Vacuum uv circular dichroism of n-glucans, in: Solution Properties of Polysaccharides, American Chemical Society Symposium Series No. 150 ( D. A. Brant, ed.), pp. 303–315, American Chemical Society, Washington, DC.CrossRefGoogle Scholar
  151. Stipanovic, A. J., and Stevens, E. S., 1981b, Vacuum-ultraviolet circular dichroism of chondroitins and their complexes with poly(L-arginine), Biopolymers 20: 1565–1573.CrossRefGoogle Scholar
  152. Stipanovic, A. J., and Stevens, E. S., 1983, Vacuum ultraviolet circular dichroism of cellulose and cellulose acetates, J. Appl. Polym. Sci. 37: 277–281.Google Scholar
  153. Stipanovic, A. J., Stevens, E. S., and Gekko, K., 1980, Vacuum ultraviolet circular dichroism of dextran, Macromolecules 13: 1471–1473.CrossRefGoogle Scholar
  154. Stockton, B., Evans, L. V., Morris, E. R., Powell, D. A., and Rees, D. A., 1980a, Alginate block structure in Laminaria digitata: Implications for holdfast attachment, Bot. Mar. 23: 563–567.Google Scholar
  155. Stockton, B., Evans, L. V., Morris, E. R., and Rees, D. A., 1980b, Circular dichroism analysis of the block structure of alginates from Alaria esculenta, Int. J. Biol. Macromol. 2: 176–178.CrossRefGoogle Scholar
  156. Stone, A. L., 1969, Optical rotatory dispersion of mucopolysaccharides and mucopolysaccharide—dye complexes. II. Ultraviolet Cotton effects in the amide transition bands, Biopolymers 7: 173–188.PubMedCrossRefGoogle Scholar
  157. Stone, A. L., 1971, Optical rotatory dispersion of mucopolysaccharides. III. Ultraviolet circular dichroism and conformational specificity in amide groups, Biopolymers 10: 739–751.PubMedCrossRefGoogle Scholar
  158. Stone, A. L., 1976, Circular dichroism and optical rotatory dispersion in polysaccharide structural analysis: Intrinsic and extrinsic cotton effects, in: Methods in Carbohydrate Chemistry, Vol. 7 ( R. L. Whistler and J. N. Bemiller, eds.), pp. 120–138, Academic Press, New York.Google Scholar
  159. Stone, A. L., and Koludny, E. H., 1971, Circular dichroism of gangliosides from normal and Tay-Sachs tissues, Chem. Phys. Lipids 6: 274–279.PubMedCrossRefGoogle Scholar
  160. Stone, A. L., Constantopoulos, G., Sotsky, S. M., and Dekaban, A., 1970, Optical rotatory dispersion of mucopolysaccharides. IV. Optical rotatory dispersion and circular dichroism of glucosoaminoglycans and heparan sulfate fractions from the urine of patients with mucopolysaccharidosis (Hurler syndrome), Biochim. Biophys. Acta 222: 79–89.PubMedCrossRefGoogle Scholar
  161. Tako, M., and Nakamura, S., 1988, Gelation mechanism of agarose, Carbohydr. Res. 180: 277–284.CrossRefGoogle Scholar
  162. Texter, J., and Stevens, E. S., 1979, Random-phase circular dichroism calculations of the Q*/3s4—n transition in chiral alcohols, J. Chem. Phys. 70: 1440–1449.CrossRefGoogle Scholar
  163. Thom, D., Grant, G. T., Morris, E. R., and Rees, D. A., 1982, Characterisation of cation binding and gelation of polyuronates by circular dichroism, Carbohydr. Res. 100: 29–42.CrossRefGoogle Scholar
  164. Thomas, M. W., Rudzki, J. E., Walborg, E. F., Jr., and Jirgensons, B., 1979, Circular dichroism and saccharide-induced conformational transitions of soybean agglutinin, in: Carbohydrate Protein Interactions, American Chemical Society Symposium Series No. 88 (I. J. Goldstein, ed.), pp. 67–74, American Chemical Society, Washington, DC.CrossRefGoogle Scholar
  165. Tvaroska, I., and Vaclavik, L., 1987, Stereochemistry of nonreducing disaccharides in solution, Carbohydr. Res. 160: 137–149.CrossRefGoogle Scholar
  166. Tvaroska, I., Bystricky, S., Malon, P., and Blaha, K., 1982, Non-planar conformations of methylacetamide: Solvent effect and chiroptical properties, Collect. Czech. Chem. Commun. 77: 17–28.CrossRefGoogle Scholar
  167. van Holst, G.-J., and Varner, J. E., 1984, Reinforced poldyproline II conformation in a hydroxyprolinerich cell wall glycoprotein from carrot root, Plant Physiol. 74: 247–251.PubMedCrossRefGoogle Scholar
  168. Walkinshaw, M. D., and Arnott, S., 1981a, Conformations and interactions of pectins. I. X-ray diffraction analyses of sodium pectate in neutral and acidified forms, J. Mol. Biol. 153: 1055–1073.PubMedCrossRefGoogle Scholar
  169. Walkinshaw, M. D., and Arnott, S., 1981b, Conformations and interactions of pectins. II. Models for junction zones in pectinic acid and calcium pectate gels, J. Mol. Biol. 153: 1075–1085.PubMedCrossRefGoogle Scholar
  170. Whistler, R. L., and BeMiller, J. N., eds., 1993, Industrial Gums, 3rd ed., Academic Press, San Diego.Google Scholar
  171. Wulff, G., and Kubik, S., 1992, Circular dichroism and ultraviolet spectroscopy of complexes of amylose, Carbohydr. Res. 237: 1–10.CrossRefGoogle Scholar
  172. Yeh, D. Y., and Bush, C. A., 1974, Theoretical treatment of the circular dichroism of N-acetyl amino sugars, J. Phys. Chem. 78: 1829–1833.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Eugene S. Stevens
    • 1
  1. 1.Department of ChemistryState University of New York at BinghamtonBinghamtonUSA

Personalised recommendations