Synthesis and Layout for Analog and Mixed-Signal ICs in the ACACIA System

  • R. A. Rutenbar
  • L. R. Carley
  • P. C. Maulik
  • E. S. Ochotta
  • T. Mukherjee
  • B. Basaran
  • S. Mitra
  • S. K. Nag
  • B. R. Stanisic

Abstract

An increasing number of ICs require some core of analog circuitry for interfacing, wireless communication, multimedia data handling (speech, vision), etc. Despite substantial progress on CAD tools, these analog subsystems are still mostly designed by hand. This paper surveys progress on one proposed solution to this problem: a top-to-bottom tool suite for analog and mixed-signal designs under development at Carnegie Mellon University, called ACACIA. The principal focus of the ACACIA system is synthesis: of circuits and layouts, from cells to systems. We describe here briefly the core tools in ACACIA, focusing on cell-level circuit synthesis and layout, and mixed-signal system-level floorplanning, routing, and power grid design.

Keywords

Simulated Annealing Analog Circuit Synthesis Tool Circuit Topology Analog Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Nye, D.C. Riley, A. Sangiovanni-Vincentelli, and A.L. Tits, “DELIGHT.SPICE: an optimization-based system for the design of integrated circuits,” IEEE Trans. CAD, vol. 7, no. 4, Apr. 1988.Google Scholar
  2. [2]
    M.G.R. Degrauwe, et al., “Towards an analog system design environment,” IEEE JSSC, vol. 24, no. 3, Jun. 1989.Google Scholar
  3. [3]
    R. Harjani, R.A. Rutenbar, and L.R. Carley, “OASYS: a framework for analog circuit synthesis,” IEEE Trans. CAD, vol. 8, Dec. 1989.Google Scholar
  4. [4]
    H.Y. Koh, C.H. Sequin, and P.R. Gray, “OPASYN: a compiler for MOS operational amplifiers,” IEEE Trans. CAD, vol. 9, no. 2, Feb. 1990.Google Scholar
  5. [5]
    G. Gielen, et al, “Analog circuit design optimization based on symbolic simulation and simulated annealing,” IEEE JSSC, vol. sc-25, no. 3, Jun. 1990.Google Scholar
  6. [6]
    J.P. Harvey, M.I. Elmasry, and B. Leung, “STAIC: an interactive framework for synthesizing CMOS and BiCMOS analog circuits,” IEEE Trans, CAD, vol. 11, no. 11, Nov. 1992.Google Scholar
  7. [7]
    G. Gielen and W. M. Sansen, Symbolic Analysis for Automated Design of Analog Integrated Circuits, Norweü, MA: Kluwer Academic Publishers, 1991.CrossRefGoogle Scholar
  8. [8]
    F. V. Fernandez, et al., “Interactive ac modeling and characterization of analog circuits via symbolic analysis,” Kluwer Journal on Analog ICs and Signal Processing, vol. 1, 1991.Google Scholar
  9. [9]
    P. Wambacq, et al., “Efficient symbolic computation of approximated small-signal characteristics of analog integrated circuits,” IEEE JSSC, vol. 30, no. 3, Mar. 1995.Google Scholar
  10. [10]
    Q. Yu and C. Sechen, “Approximate symbolic analysis of large analog integrated circuits,” Proc. IEEE ICCAD, pp. 664–671, Nov. 1994.Google Scholar
  11. [11]
    G. Gielen, P. Wambacq, W. M. Sansen, “Symbolic analysis methods and applications for analog circuits: a tutorial overview,” Proc, IEEE, vol. 82, Feb. 1994.Google Scholar
  12. [12]
    P. C. Maulik, L. R. Carley, and R. A. Rutenbar, “A mixed-integer nonlinear programming approach to analog circuit synthesis,” Proc. ACM/IEEE DAC, June 1992.Google Scholar
  13. [13]
    E. Ochotta, R.A. Rutenbar and L.R. Carley, “Equation-free synthesis of high-performance linear analog circuits,” Advanced Research in VLSI and Parallel Systems, Proc. of the 1992 Brown/MIT Conference, March 1992.Google Scholar
  14. [14]
    E.S. Ochotta, L.R. Carley, and R.A. Rutenbar, “Analog circuit synthesis for large, realistic cells: Designing a pipelined A/D converter with ASTRX/ OBLX,” Proc. IEEE CICC, May 1994.Google Scholar
  15. [15]
    E.S. Ochotta, L.R. Carley, and R.A. Rutenbar, “ASTRX/OBLX: Tools for rapid synthesis of high-performance analog circuits,” Proc. ACM/IEEE DAC, June 1994.Google Scholar
  16. [16]
    F. Medeiro, et al., “A statistical optimization-based approach for automated sizing of analog cells,” Proc. IEEE ICCAD, Nov. 1994.Google Scholar
  17. [17]
    B. Sheu, et al., “BSIM: Berkeley short-channel IGFET model for MOS transistors,” IEEE JSSC, vol. sc-22, no. 4, Aug. 1987.Google Scholar
  18. [18]
    L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluation for timing analysis”, IEEE Trans. CAD, vol. CAD-9, no. 4, April 1990.Google Scholar
  19. [19]
    S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, 13 May 1983.Google Scholar
  20. [20]
    R. A. Rutenbar, “Simulated annealing algorithms: An overview”, IEEE Circuits and Devices, vol. 5, no. 1, Jan. 1989.Google Scholar
  21. [21]
    J. Lam, “An efficient simulated annealing schedule,” Ph.D. Dissertation, Yale University, Sept. 1988.Google Scholar
  22. [22]
    K. Nakamura and L.R. Carley, “An enhanced fully differential folded-cascode op amp,” IEEE JSSC, vol. 27, no. 4, Apr. 1992.Google Scholar
  23. [23]
    B. Basaran, R. A. Rutenbar and L. R. Carley, “Latchup-Aware Placement and Parasitic-Bounded Routing of Custom Analog Cells”, Proc. IEEE ICCAD, Nov. 1993.Google Scholar
  24. [24]
    S. Mitra, R. A. Rutenbar, L. R. Carley, and D.J. Allstot, “Substrate-aware mixed-signal macrocell placement in WRIGHT”, IEEE JSSC, vol. 30, no. 3, pp. 269–278, Mar. 1995.Google Scholar
  25. [25]
    B. R. Stanisic, N. K. Verghese, R. A. Rutenbar, L. R. Carley and D. J. Allstot, “Addressing substrate coupling in mixed-mode ICs: simulation and power distribution synthesis”, IEEE JSSC, vol. 29, no. 3, Mar. 1994.Google Scholar
  26. [26]
    B.R. Stanisic, R. A. Rutenbar and L. R. Carley, “Mixed-signal noise-decoupling via simultaneous power distribution design and cell customization in RAIL”, IEEE JSSC, vol. 30, no. 3, Mar. 1995.Google Scholar
  27. [27]
    S. Mitra, S. K. Nag, R. A. Rutenbar and L. R. Carley, “System-level routing of mixed-signal ASICs in WREN”, Proc. IEEE ICCAD, Nov. 1992.Google Scholar
  28. [28]
    J. M. Cohn, D. J. Garrod, R. A. Rutenbar and L. R. Carley, “KOAN/ANA-GRAM II: New tools for device-level analog placement and routing”, IEEE JSSC, Vol. 26, No. 3, March 1991.Google Scholar
  29. [29]
    L. R. Carley and T. Mukherjee, “High-speed low-power integrating CMOS sample-and-hold amplifier architecture,” to appear in Proc. IEEE CICC, May 1995.Google Scholar
  30. [30]
    D. W. Jepsen and C. D. Gelatt, Jr., “Macro placement by Monte Carlo annealing”, Proc. IEEE ICCD, Nov. 1984.Google Scholar
  31. [31]
    W. Swartz and C. Sechen, “New algorithms for the placement and routing of macroczlls,” Proc. IEEE ICCAD, Nov. 1990.Google Scholar
  32. [32]
    N. K. Verghese, D. J. Allstot and S. Masui, “Rapid simulation of substrate coupling effects in mixed-mode ICs”, Proc. IEEE CICC, May 1993.Google Scholar
  33. [33]
    N. Verghese, D.J. Allstot and M. Wolfe, “Fast parasitic extraction for substrate coupling in mixed-signal ICs,” Proc. IEEE CICC, May 1995.Google Scholar
  34. [34]
    S. Mitra, R. A. Rutenbar, L. R. Carley, and D.J. Allstot, “A methodology for rapid estimation of substrate-coupled switching noise”, to appear Proc. IEEE CICC, May 1995.Google Scholar
  35. [35]
    T. Schmerbeck, R. Richetta and L. Smith, “A 27 MHz mixed analog/digital recording channel DSP using partial response signalling with maximum likelihood detection,” in Tech. Digest IEEE ISSCC, Feb. 1991.Google Scholar
  36. [36]
    U. Chowdhury and A. Sangiovanni-Vincentelli, “Constraint generation for routing analog circuits”, Proc. ACM/IEEE DAC, June 1990.Google Scholar
  37. [37]
    H. H. Chen and E. Kuh, “Glitter: A gridless variable width channel router”, IEEE Trans. CAD, vol. CAD-5, no. 4, Oct 1986.Google Scholar
  38. [38]
    T. Mukherjee, L.R. Carley and R.A. Rutenbar, “Synthesis of manufacturable analog circuits,” Proc. IEEE ICCAD, pp. 586–593, Nov. 1994.Google Scholar
  39. [39]
    P.C. Maulik, L.R. Carley and R.A. Rutenbar, “Integer programming-based topology selection of cell-level analog circuits,” IEEE Trans. CAD, vol. 14, no. 4, April 1995.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • R. A. Rutenbar
    • 1
  • L. R. Carley
    • 1
  • P. C. Maulik
    • 1
  • E. S. Ochotta
    • 1
  • T. Mukherjee
    • 1
  • B. Basaran
    • 1
  • S. Mitra
    • 1
  • S. K. Nag
    • 1
  • B. R. Stanisic
    • 1
  1. 1.Dept. of ECECarnegie Mellon UniversityPittsburghUSA

Personalised recommendations