LATEX documents

  • George Grätzer

Abstract

In this chapter, we take up the organization of a document. Section 6.1 discusses the document structure in general, and section 6.2 presents the preamble. Section 6.3 discusses the front matter, including the abstract environment and the table of contents. Section 6.4 presents the main matter, including sectioning, cross-referencing, tables, and figures. Section 6.5 covers the back matter, including the bibliography and the index.

Keywords

Lattice Theory Complete Lattice Universal Algebra Document Class Front Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Henry H. Albert, Free torsoids, Current Trends in Lattice Theory, D. Van Nostrand, 1970.Google Scholar
  2. [2]
    Henry H. Albert, Free torsoids, Current Trends in Lattice Theory (G. H. Birnbaum, ed.), vol. 7, D. Van Nostrand, Princeton-Toronto-London- Melbourne, January 1970, no translation available, pp. 173–215 (German).Google Scholar
  3. [3]
    Soo-Key Foo, Lattice Constructions, Ph.D. thesis, University of Winnebago, 1990.Google Scholar
  4. [4]
    Soo-Key Foo, Lattice Constructions, Ph.D. thesis, University of Winnebago, Winnebago MN, December 1990, final revision not yet available.Google Scholar
  5. [5]
    Grant H. Foster, Computational complexity in lattice theory, tech. report, Carnegie Mellon University, 1986.Google Scholar
  6. [6]
    Grant H. Foster, Computational complexity in lattice theory, Research Note 128A, Carnegie Mellon University, Pittsburgh PA, December 1986, research article in preparation.Google Scholar
  7. [7]
    Peter Konig, Composition of functions, Proceedings of the Conference on Universal Algebra (Kingston, 1969).Google Scholar
  8. [8]
    Peter Konig, Composition of functions, Proceedings of the Conference on Universal Algebra (G. H. Birnbaum, ed.), vol. 7, Canadian Mathematical Society, Queen’s Univ., Kingston ON, available from the Montreal office, pp. 1–106 (English).Google Scholar
  9. [9]
    William A. Landau, Representations of complete lattices, Abstract: Notices Amer. Math. Soc., 18, 937.Google Scholar
  10. [10]
    William A. Landau, Representations of complete lattices, Abstract: Notices Amer. Math. Soc. 18, 937, December 1975.Google Scholar
  11. [11]
    George A. Menuhin, Universal Algebra, D. van Nostrand, Princeton- Toronto-London-Melbourne, 1968.Google Scholar
  12. [12]
    George A. Menuhin, Universal Algebra, Second ed., University Series in Higher Mathematics, vol. 58, D. van Nostrand, Princeton-Toronto-London- Melbourne, March 1968 ( English), no Russian translation.Google Scholar
  13. [13]
    Ernest T. Moynahan, On a problem of M. H. Stone, Acta Math. Acad. Sci. Hungar. 8 (1957), 455 – 460.CrossRefGoogle Scholar
  14. [14]
    Ernest T. Moynahan, On a problem of M. H. Stone, Acta Math. Acad. Sci. Hungar. 8 (1957), 455–460 (English), Russian translation available.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • George Grätzer
    • 1
  1. 1.Department of MathematicsUniversity of ManitobaWinnipegCanada

Personalised recommendations