Comparison of the Peroxidase Activity of Hemoproteins and Cytochrome P450

  • Lawrence J. Marnett
  • Todd A. Kennedy
Chapter

Abstract

Shakespeare recognized centuries ago the value of a foil for highlighting similarities and differences between characters. Comparative analysis is also an effective mechanism for studying related proteins to better understand the structural basis of their functions. Indeed, there are many similarities between peroxidases and cytochromes P450 (P450s) in terms of prosthetic group and catalytic mechanism. However, there are also important differences in three-dimensional structure, reactions catalyzed, and interactions with other proteins. As a result, these two classes of oxidizing enzymes evolved to fulfill very different functions. Peroxidases and P450s are hemeproteins; both react with peroxides to generate higher oxidation states; and both catalyze oxidation and oxygenation reactions that involve electron transfer from the substrate to the higher oxidation states. The major differences between peroxidases and P450s include the ability of P450s to accept electrons from a reductase; the redox potentials of the higher oxidation states; and the ability of P450s to generate the equivalent of a metal-bound peroxide by reduction of O2 at the heme center during catalytic turnover.

Keywords

Oxygen Transfer Heme Iron High Oxidation State Allene Oxide Tyrosyl Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hrycay, E., and O’Brien, P. J., 1971, Cytochrome P-450 as a microsomal peroxidase utilizing a lipid peroxide substrate, Arch. Biochem. Biophys. 147: 14–27.PubMedCrossRefGoogle Scholar
  2. 2.
    Hrycay, E. G., and O’Brien, P. J., 1972, Cytochrome P450 as a microsomal peroxidase in steroid hydroperoxide reduction, Arch. Biochem. Biophys. 153: 480–494.PubMedCrossRefGoogle Scholar
  3. 3.
    White, R. E., and Coon, M. J., 1980, Oxygen activation by cytochrome P-450, Annu. Rev. Biochem. 49: 315–356.PubMedCrossRefGoogle Scholar
  4. 4.
    Dunford, H. B., and Stillman, J. S., 1976, On the function and mechanism of action of peroxidases, Coord. Chem. Rev. 19: 187–251.CrossRefGoogle Scholar
  5. 5.
    Marnett, L. J., Weller, P. A., and Battista, J. R., 1986, Comparison of the peroxidase activity of hemeproteins and cytochrome P 450, in: Cytochrome P-450 (P. R. Ortiz de Montellano, ed.), Plenum Press, New York, pp. 29–76.Google Scholar
  6. 6.
    Fruton, J. S., 1972, Molecules and Life: Historical Essays on the Interplay of Chemistry and Biology, Wiley—Interscience, New York.Google Scholar
  7. 7.
    Saunders, B. C., Holmes-Siedel, A. G., and Stark, B. P., 1964, Peroxidases, Butterworths, London.Google Scholar
  8. 8.
    Yamazaki, I., 1974, Peroxidase, in: Molecular Mechanisms of Oxygen Activation ( O. Hayaishi, ed.), Academic Press, New York, pp. 535–558.Google Scholar
  9. 9.
    Saunders, B. C., 1975, Peroxidases and catalases, in: Inorganic Biochemistry ( G. L. Eichhorn, ed.), Elsevier, Amsterdam, pp. 988–1021.Google Scholar
  10. 10.
    Everse, J., Everse, K. E., and Grisham, M. B. (eds.), 1991, Peroxidases in Chemistry and Biology, CRC Press, Boca Raton, FL.Google Scholar
  11. 11.
    Zeng, J., and Fenna, R. E., 1992, X-ray crystal structure of canine myeloperoxidase at 3 Â resolution, J. Mol. Biol. 226: 185–207.PubMedCrossRefGoogle Scholar
  12. 12.
    Edwards, S. L., Raag, R., Wariishi, H., Gold, M. H., and Poulos, T. L., 1993, Crystal structure of lignin peroxidase, Proc. Natl. Acad. Sci. USA 90: 750–754.PubMedCrossRefGoogle Scholar
  13. 13.
    Poulos, T. L., Edwards, S. L., Wariishi, H., and Gold, M. H., 1993, Crystallographic refinement of lignin peroxidase at 2 A, J. Biol. Chem. 268: 4429–4440.PubMedGoogle Scholar
  14. 14.
    Picot, D., Loll, P. J., and Garavito, R. M., 1994, The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1, Nature 367: 243–249.PubMedCrossRefGoogle Scholar
  15. 15.
    Kunishima, N., Fukuyama, K., Matsubara, H., Hatanaka, H., Shibano, Y., and Amachi, T., 1994, Crystal structure of the fungal peroxidase from Arthromyces ramosus at 1.9A resolution. Structural comparisons with the lignin and cytochrome c peroxidases, J. Mol. Biol. 235: 331–344.PubMedCrossRefGoogle Scholar
  16. 16.
    Poulos, T. L., Freer, S. T., Alden, R. A., Edwards, S. L., Skogland, U., Takio, K., Eriksson, B., Xuong, N.-H., Yonetani, T., and Kraut, J., 1980, The crystal structure of cytochrome c peroxidase, J. Biol. Chem. 255: 575–580.PubMedGoogle Scholar
  17. 17.
    Murthy, M. R. N., Reid, T. J., III, Sicignano, A., Tanaka, N., and Rossmann, M.G., 1981, Structure of beef liver catalase, J. Mol. Biol. 152: 465–499.PubMedCrossRefGoogle Scholar
  18. 18.
    Klebanoff, S. J., 1991, Myeloperoxidase: Occurrence and biological function, in: Peroxidases in Chemistry and Biology (J. Everse, K. E. Everse, and M. B. Grisham, eds.), CRC Press, Boca Raton, FL,Vol. 1, pp. 1–35.Google Scholar
  19. 19.
    Hamberg, M., Svensson, J., Wakabayashi, T., and Samuelsson, B., 1974, Isolation and structure of two prostaglandin endoperoxides that cause platelet aggregation, Proc. Natl. Acad. Sci. USA 71: 345349.Google Scholar
  20. 20.
    Nugteren, D. H., and Hazelhof, E., 1973, Isolation and properties of intermediates in prostaglandins biosynthesis, Biochim. Biophys. Acta 326: 448–461.PubMedCrossRefGoogle Scholar
  21. 21.
    Johnson, K. R., Nauseef, W. M., Care, A., Wheelock, M. J., Shane, S., Hudson, S., Koeffler, H. P., Selsted, M., Miller, C., and Rovera, G., 1987, Characterization of cDNA clones for human myeloperoxidase: Predicted amino acid sequence and evidence for multiple mRNA species, Nucleic Acids Res. 15: 2013–2028.PubMedCrossRefGoogle Scholar
  22. 22.
    Morishita, K., Kubota, N., Asano, S., Kaziro, Y., and Nagata, S., 1987, Molecular cloning and characterization of cDNA for human myeloperoxidase, J. Biol. Chem. 262: 3844–3851.PubMedGoogle Scholar
  23. 23.
    Sakamaki, K., Tomonaga, M., Tsukui, K., and Nagata, S., 1989, Molecular cloning and characterization of a chromosomal gene for human eosinophil peroxidase, J. Biol. Chem. 264: 16828–16836.PubMedGoogle Scholar
  24. 24.
    Kimura, S., Kotani, T., McBride, O. W., Umeki, K., Hirai, K., Nakayama, T., and Ohtaki, S., 1987, Human thyroid peroxidase: Complete cDNA and protein sequence, chromosome mapping, and identification of two alternately spliced mRNAs, Proc. Natl. Acad. Sci. USA 84: 5555–5559.PubMedCrossRefGoogle Scholar
  25. 25.
    Merlie, J. P., Fagan, D., Mudd, J., and Needleman, P., 1988, Isolation and characterization of the complementary DNA for sheep seminal vesicle prostaglandin endoperoxide synthase (cyclooxygenase), J. Biol. Chem. 263: 3550–3553.PubMedGoogle Scholar
  26. 26.
    DeWitt, D. L., and Smith, W. L., 1988, Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence, Proc. Natl. Acad. Sci. USA 85: 1412–1416.PubMedCrossRefGoogle Scholar
  27. 27.
    Yokoyama, C., Takai, T., and Tanabe, T., 1988, Primary structure of sheep prostaglandin endoperoxide synthase deduced from cDNA sequence, FEBS Lett: 231: 347–351.PubMedCrossRefGoogle Scholar
  28. 28.
    Dull, T. J., Uyeda, C., Strosberg, A. D., Nedwin, G., and Seilhamer, J. J., 1990, Molecular cloning of cDNAs encoding bovine and human lactoperoxidase, DNA Cell Biol. 9: 499–509.PubMedCrossRefGoogle Scholar
  29. 29.
    Cals, M.-M., Mailliart, P., Brignon, G., Anglade, P., and Dumas, B. R., 1991, Primary structure of bovine lactoperoxidase, a fourth member of a mammalian heme peroxidase family, Eur. J. Biochem. 198: 733–739.PubMedCrossRefGoogle Scholar
  30. 30.
    Poulos, T. L., and Fenna, R. E., 1994, Peroxidases: Structure, function, and engineering, in: Metal Ions in Biological Systems: Metalloenzymes Involving Amino Acid-Residue and Related Radicals ( H. Sigel and A. Sigel, eds.), Dekker, New York, pp. 25–75.Google Scholar
  31. 31.
    Markey, C. M., Alward, A., Weller, P. E., and Marnett, L. J., 1987, Quantitative studies of hydroperoxide reduction by prostaglandin H synthase, J. Biol. Chem. 262: 6266–6279.PubMedGoogle Scholar
  32. 32.
    Kulmacz, R. J., 1986, Prostaglandin H synthase and hydroperoxides: Peroxidase reaction and inactivation kinetics, Arch. Biochem. Biophys. 249: 273–285.PubMedCrossRefGoogle Scholar
  33. 33.
    Hsuanyu, Y., and Dunford, H. B., 1992, Prostaglandin H synthase kinetics. The effect of substituted phenols on cyclooxygenase activity and the substituent effect on phenolic peroxidatic activity, J Biol. Chem. 267: 17649–17657.PubMedGoogle Scholar
  34. 34.
    Hsuanyu, Y., and Dunford, H. B., 1990, Kinetics of the reaction of prostaglandin H synthase compound II with ascorbic acid, Arch. Biochem. Biophys. 281: 282–286.PubMedCrossRefGoogle Scholar
  35. 35.
    Bakovic, M., and Dunford, H. B., 1993, Kinetics of the oxidation ofp-coumaric acid by prostaglandin H synthase and hydrogen peroxide, Biochemistry 32: 833–840.PubMedCrossRefGoogle Scholar
  36. 36.
    Sun, W., and Dunford, H. B., 1993, Kinetics and mechanism of the peroxidase-catalyzed iodination of tyrosine, Biochemistry 32: 1324–1331.PubMedCrossRefGoogle Scholar
  37. 37.
    Smith, W. L., Eling, T. E., Kulmacz, R. J., Marnett, L. J., and Tsai, A., 1992, Tyrosyl radicals and their role in hydroperoxide-dependent activation and inactivation of prostaglandin endoperoxide synthase, Biochemistry 31: 3–7.PubMedCrossRefGoogle Scholar
  38. 38.
    DeWitt, D. L., El-Harith, E. A., Kraemer, S. A., Andrews, M. J., Yao, E. F., Armstrong, R. L., and Smith, W. L., 1990, The aspirin and heme-binding sites of ovine and murine prostaglandin endoperoxide synthases, J. Biol. Chem. 265: 5192–5198.PubMedGoogle Scholar
  39. 39.
    Shimokawa, T., Kulmacz, R. J., DeWitt, D. L., and Smith, W. L., 1990, Tyrosine 385 of prostaglandin endoperoxide synthase is required for cyclooxygenase catalysis, J. Biol. Chem. 265: 20073–20076.PubMedGoogle Scholar
  40. 40.
    Kennedy, T. A., Smith, C. J., and Marnett, L. J., 1994, Investigation of the role of cysteines in catalysis by prostaglandin endoperoxide synthase, J. Biol. Chem. 269: 27357–27364.PubMedGoogle Scholar
  41. 41.
    Welinder, K. G., 1992, Superfamily of plant, fungal and bacterial peroxidases, Curr. Opin. Struct. Biol. 2: 388–393.CrossRefGoogle Scholar
  42. 42.
    Morita, Y., Mikami, B., Yamashita, H., Lee, J. Y., Aibara, S., Sato, M., Katsube, Y., and Tanaka, N., 1991, Primary and crystal structures of horseradish peroxidase isozyme E5, in: Biochemical, Molecular and Physiological Aspects of Plant Peroxidases ( J. Lobarzewski, H. Greppin, C. Penel, and T. Gaspar, eds.), University of Geneva, Geneva, pp. 81–88.Google Scholar
  43. 43.
    Poulos, T. L., Finzel, B. C., Gunsalus, I. C., Wagner, G. C., and Kraut, J., 1985, The 2.6A crystal structure of Pseudomonas putida cytochrome P 450, J. Biol. Chem. 260: 16122–16130.PubMedGoogle Scholar
  44. 44.
    Hasemann, C. A., Ravichandran, K. G., Peterson, J. A., and Diesenhofer, J., 1994, Crystal structure and refinement of cytochrome P450terp at 2.3A resolution, J. Mol. Biol. 236: 1169–1185.PubMedCrossRefGoogle Scholar
  45. 45.
    Ravichandran, K. G., Boddupalli, S. S., Hasemann, C. A., Peterson, J. A., and Deisenhofer, J., 1993, Crystal structure of hemoprotein domain of P4508MS, a prototype for microsomal P450’s, Science 261: 731–736.PubMedCrossRefGoogle Scholar
  46. 46.
    Hasemann, C. A., Ravichandran, K. G., Boddupalli, S. S., Peterson, J. A., and Deisenhofer, J., 1995, Structure and function of cytochromes P450: A comparative analysis of the three-dimensional structures of P450tetp, P450cam, and the hemoprotein domain of P450BM-3, Structure,in press.Google Scholar
  47. 47.
    Haurand, M., and Ullrich, V., 1985, Isolation and characterization of thromboxane synthase from human platelets as a cytochrome P-450 enzyme, J. Biol. Chem. 260: 15059–15067.PubMedGoogle Scholar
  48. 48.
    Hecker, M., and Ullrich, V., 1989, On the mechanism of prostacyclin and thromboxane A2 biosynthesis, J. Biol. Chem. 264: 141–150.PubMedGoogle Scholar
  49. 49.
    Ullrich, V., Castle, L., and Weller, P., 1981, Spectral evidence for the cytochrome P450 nature of prostacyclin synthase, Biochem. Pharmacol. 30: 2033–2036.PubMedCrossRefGoogle Scholar
  50. 50.
    Song, W.-C., Funk, C. D., and Brash, A. R., 1993, Molecular cloning of an allene oxide synthase: A cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides, Proc. Natl. Acad. Sci. USA 90: 8519–8523.PubMedCrossRefGoogle Scholar
  51. 51.
    Pelletier, H., and Kraut, J., 1992, Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c, Science 258: 1748–1755.PubMedCrossRefGoogle Scholar
  52. 52.
    Lambeir, A. M., Markey, C. M., Dunford, H. B., and Marnett, L. J., 1985, Spectral properties of the higher oxidation states of prostaglandin H synthase, J. Biol. Chem. 260: 14894–14896.PubMedGoogle Scholar
  53. 53.
    Kulmacz, R. J., Tsai, A.-L., and Palmer, G., 1987, Herne spin states and peroxide-induced radical species in prostaglandin H synthase, J. Biol. Chem. 262: 10524–10531.PubMedGoogle Scholar
  54. 54.
    Marnett, L. J., and Reed, G. A., 1979, Peroxidatic oxidation of benzo[a]pyrene and prostaglandin biosynthesis, Biochemistry 18: 2923–2929.PubMedCrossRefGoogle Scholar
  55. 55.
    Ohki, S., Ogino, N., Yamamoto, S., and Hayaishi, O., 1979, Prostaglandin hydroperoxidase, an integral part of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes, J. Biol. Chem. 254: 829–836.PubMedGoogle Scholar
  56. 56.
    Shimokawa, T., Kulmacz, R. J., DeWitt, D. L., and Smith, W. L., 1990, Tyrosine 385 of prostaglandin endoperoxide synthase is required for cyclooxygenase catalysis, J. Biol. Chem. 265: 20073–20076.PubMedGoogle Scholar
  57. 57.
    Poulos, T. L., 1986, The crystal structure of cytochrome P-450cam, in: Cytochrome P-450: Structure, Mechanism, and Biochemistry (P. R. Ortiz de Montellano, ed.), Plenum Press, New York, pp. 505–539.Google Scholar
  58. 58.
    Andrews, P.C., and Krinsky, N. I., 1981, The reductive cleavage of myeloperoxidase in half, producing enzymically active hemi-myeloperoxidase, J. Biol. Chem. 256: 4211–4218.PubMedGoogle Scholar
  59. 59.
    Moguilevsky, N., Garcia-Quintana, L., Jacquet, A., Tournay, C., Fabry, L., Pierard, L., and Bollen, A., 1991, Structure and biological properties of human recombinant myeloperoxidase produced by Chinese hamster ovary cell lines, Eur. J. Biochem. 197: 605–614.PubMedCrossRefGoogle Scholar
  60. 60.
    Chance, B., 1943, The kinetics of the enzyme—substrate compound of peroxidase, J. Biol. Chem. 151: 553–577.Google Scholar
  61. 61.
    George, P., 1953, Intermediate compound formation with peroxidase and strong oxidizing agents, J. Biol. Chem. 201: 413–426.PubMedGoogle Scholar
  62. 62.
    Dolphin, D., and Felton, R. H., 1974, The biochemical significance of porphyrin it cation radicals, Acc. Chem. Res. 7: 26–32.CrossRefGoogle Scholar
  63. 63.
    Yonetani, T., 1976, Cytochrome c peroxidase, in: The Enzymes Vol. 13 ( P. D. Boyer, ed.), Academic Press, New York, pp. 345–362.Google Scholar
  64. 64.
    Sivaraja, M., Goodin, D. B., Smith, M., and Hoffman, B. M., 1989, Identification by ENDOR ofTrpt9h as the free-radical site in cytochrome c peroxidase compound ES, Science 245: 738–740.PubMedCrossRefGoogle Scholar
  65. 65.
    Houseman, A. L. P., Doan, P. E., Goodin, D. B., and Hoffman, B. M., 1993, Comprehensive explanation of the anomalous EPR spectra of wild-type and mutant cytochrome c peroxidase compound ES, Biochemistry 32: 4430–4443.PubMedCrossRefGoogle Scholar
  66. 66.
    Karthein, R., Dietz, R., Nastainczyk, W., and Ruf, H. H., 1988, Higher oxidation states of prostaglandin H synthase. EPR study of a transient tyrosyl radical in the enzyme during the peroxidase reaction, Eur. J. Biochem. 171: 313–320.PubMedCrossRefGoogle Scholar
  67. 67.
    Tsai, A.-L., Hsi, L. C., Kulmacz, R. J., Palmer, G., and Smith, W. L., 1994, Characterization of the tyrosyl radicals in ovine prostaglandin H synthase-1 by isotope replacement and site-directed mutagenesis, J. Biol. Chem. 269: 5085–5091.PubMedGoogle Scholar
  68. 68.
    Lassmann, G., Odenwaller, R., Curtis, J. F., DeGray, J. A., Mason, R. P., Marnett, L. J., and Eling, T. E., 1991, Electron spin resonance investigation of tyrosyl radicals of prostaglandin H synthase. Relation to enzyme catalysis, J. Biol. Chem. 266: 20045–20055.PubMedGoogle Scholar
  69. 69.
    Tsai, A.-L., Palmer, G., and Kulmacz, R. J., 1992, Prostaglandin H synthase. Kinetics of tyrosyl radical formation and of cyclooxygenase catalysis, J. Biol. Chem. 267: 17753–17759.PubMedGoogle Scholar
  70. 70.
    DeGray, J. A., Lassmann, G., Curtis, J. F., Kennedy, T. A., Marnett, L. J., Eling, T. E., and Mason, R. P., 1992, Spectral analysis of the protein-derived tyrosyl radicals from prostaglandin H synthase, J. Biol. Chem. 267: 23583–23588.PubMedGoogle Scholar
  71. 71.
    Kulmacz, R. J., Ren, Y., Tsai, A.-L., and Palmer, G., 1990, Prostaglandin H synthase: Spectroscopic studies of the interaction with hydroperoxides and with indomethacin, Biochemistry 29: 8760–8771.PubMedCrossRefGoogle Scholar
  72. 72.
    Harris, R. Z., Newmyer, S. L., and Ortiz de Montellano, P. R., 1993, Horseradish peroxidase-catalyzed two-electron oxidations. Oxidation of iodide, thioanisoles, and phenols at distinct sites, J. Biol. Chem. 268: 1637–1645.PubMedGoogle Scholar
  73. 73.
    Thomas, E. L., and Learn, D. B., 1991, Myeloperoxidase-catalyzed oxidation of chloride and other halides: The role of chloramines, in: Peroxidases in Chemistry and Biology (J. Everse, K. E. Everse, and M. B. Grisham, eds.), CRC Press, Boca Raton, FL, Vol. 1, pp. 83–103.Google Scholar
  74. 74.
    Bruice, T. C., 1991, Reactions of hydroperoxides with metallotetraphenylporphyrins in aqueous solutions, Acc. Chem. Res. 24: 243–249.CrossRefGoogle Scholar
  75. 75.
    Ostovic, D., and Bruice, T. C., 1992, Mechanism of alkene epoxidation by iron, chromium, and manganese higher valent oxo-metalloporphyrins, Acc. Chem. Res. 25: 314–320.CrossRefGoogle Scholar
  76. 76.
    Traylor, T. G., and Xu, F., 1988, Model reactions related to cytochrome P-450. Effects of alkene structure on the rates of epoxide formation, J. Am. Chem. Soc. 110: 1953–1958.CrossRefGoogle Scholar
  77. 77.
    Traylor, T. G., and Xu, F., 1990, Mechanisms of reactions of iron(III)porphyrins with hydrogen peroxide and hydroperoxides: Solvent and solvent isotope effects, J. Am. Chem. Soc. 112: 178–186.CrossRefGoogle Scholar
  78. 78.
    Traylor, T. G., Lee, W. A., and Stynes, D. V., 1984, Model compound studies related to peroxidases. Mechanisms of reactions of hemins with peracids, J. Am. Chem. Soc. 106: 755–764.CrossRefGoogle Scholar
  79. 79.
    Traylor, T. G., Tsuchiya, S., Byun, Y.-S., and Kim, C., 1993, High-yield epoxidations with hydrogen peroxide and tert-butyl hydroperoxide catalyzed by iron(III) porphyrins: Heterolytic cleavage of hydroperoxides, J. Am. Chem. Soc. 115: 2775–2781.CrossRefGoogle Scholar
  80. 80.
    Labeque, R., and Marnett, L. J., 1989, Homolytic and heterolytic scission of organic hydroperoxides by meso-tetraphenylporphinato-iron(III) and its relation to olefin epoxidation, J. Am. Chem. Soc. 111: 6621–6627.CrossRefGoogle Scholar
  81. 81.
    Marnett, L. J., Chen, Y.-N. P., Maddipati, K. R., Ple, P., and Labeque, R., 1988, Functional differentiation of cyclooxygenase and peroxidase activities of prostaglandin synthase by trypsin treatment: Possible location of a prosthetic heme binding site, J. Biol. Chem. 263: 16532–16535.PubMedGoogle Scholar
  82. 82.
    George, P., and Irvine, D.H., 1954, Reaction of metmyoglobin with strong oxidizing agents, Biochem. J. 58: 188–195.PubMedGoogle Scholar
  83. 83.
    McCarthy, M. B., and White, R. E., 1983, Functional differences between peroxidase compound I and the cytochrome P-450 reactive oxygen intermediate, J. Biol. Chem. 258: 9153–9158.PubMedGoogle Scholar
  84. 84.
    George, P., and Irvine, D. H., 1955, A possible structure for the higher oxidation state of metmyoglobin, Biochem. J. 60: 596–604.PubMedGoogle Scholar
  85. 85.
    Catalano, C. E., Choe, Y. S., and Ortiz de Montellano, P. R., 1989, Reactions of the protein radical in peroxide-treated myoglobin. Formation of a heure-protein cross-link, J. Biol. Chem. 264: 10534–10541.PubMedGoogle Scholar
  86. 86.
    Wilks, A., and Ortiz de Montellano, P. R., 1992, Intramolecular translocation of the protein radical formed in the reaction of recombinant sperm whale myoglobin with H202, J. Biol. Chem. 267: 8827–8833.PubMedGoogle Scholar
  87. 87.
    Rao, S. I., Wilks, A., and Ortiz de Montellano, P. R., 1993, The roles of His-64, Tyr-103, Tyr-146, and Tyr-151 in the epoxidation of styrene and 13-methylstyrene by recombinant sperm whale myoglobin, J. Biol. Chem. 268: 803–809.PubMedGoogle Scholar
  88. 88.
    Allentoff, A. J., Bolton, J. L., Wilks, A., Thompson, J. A., and Ortiz de Montellano, P. R., 1992, Heterolytic versus homolytic peroxide bond cleavage by sperm whale myoglobin and myoglobin mutants, J. Am. Chem. Soc. 114: 9744–9749.CrossRefGoogle Scholar
  89. 89.
    Weiss, R. H., and Estabrook, R. W., 1986, The mechanism of cumene hydroperoxide-dependent lipid peroxidation: The function of cytochrome P-450, Arch. Biochem. Biophys. 251: 348–360.PubMedCrossRefGoogle Scholar
  90. 90.
    Weiss, R. H., and Estabrook, R. W., 1986, The mechanism of cumene hydroperoxide-dependent lipid peroxidation: The significance of oxygen uptake, Arch. Biochem. Biophys. 251: 336–347.PubMedCrossRefGoogle Scholar
  91. 91.
    Vaz, A. D. N., and Coon, M. J., 1987, Hydrocarbon formation in the reductive cleavage of hydroperoxides by cytochrome P-450, Proc. Natl. Acad. Sci. USA 84: 1172–1176.PubMedCrossRefGoogle Scholar
  92. 92.
    Vaz, A. D. N., Roberts, E. S., and Coon, M. J., 1990, Reductive 13-scission of the hydroperoxides of fatty acids and xenobiotics: Role of alcohol-inducible cytochrome P-450, Proc. Natl. Acad. Sci. USA 87: 5499–5503.PubMedCrossRefGoogle Scholar
  93. 93.
    Song, W.-C., Baertschi, S. W., Boeglin, W. E., Harris, T. M., and Brash, A. R., 1993, Formation of epoxyalcohols by a purified allene oxide synthase. Implications for the mechanism of allene oxide synthesis, J. Biol. Chem. 268: 6293–6298.PubMedGoogle Scholar
  94. 94.
    Adachi, S., Nagano, S., Ishimori, K., Watanabe, Y., Morishima, I., Egawa, T., Kitagawa, T., and Makino, R., 1993, Roles of proximal ligand in heure proteins: Replacement of proximal histidine of human myoglobin with cysteine and tyrosine by site-directed mutagenesis as models for P-450, chloroperoxidase, and catalase, Biochemistry 32: 241–252.PubMedCrossRefGoogle Scholar
  95. 95.
    Wang, J. M., Mauro, M., Edwards, S. L., Oatley, S. J., Fishel, L. A., Ashford, V. A., Xuong, N. H., and Kraut, J., 1990, X-ray structures of recombinant yeast cytochrome c peroxidase and three heme-cleft mutants prepared by site-directed mutagenesis, Biochemistry 29: 7160–7173.PubMedCrossRefGoogle Scholar
  96. 96.
    Goodin, D. B., and McRee, D. E., 1993, The Asp-His-Fe triad of cytochrome c peroxidase controls the reduction potential, electronic structure, and coupling of the tryptophan free radical to the heme, Biochemistry 32: 3313–3324.PubMedCrossRefGoogle Scholar
  97. 97.
    Vitello, L. B., Erman, J. E., Miller, M. A., Mauro, J. M., and Kraut, J., 1992, Effect of Asp-235-Asn substitution on the absorption spectrum and hydrogen peroxide reactivity of cytochrome c peroxidase, Biochemistry 31: 11524–11535.PubMedCrossRefGoogle Scholar
  98. 98.
    Sundaramoorthy, M., Choudhury, K., Edwards, S. L., and Poulos, T. L., 1991, Crystal structure and preliminary functional analysis of the cytochrome c peroxidase His175Gln proximal ligand mutant, J. Am. Chem. Soc. 113: 7755–7757.CrossRefGoogle Scholar
  99. 99.
    Choudhury, K., Sundaramoorthy, M., Mauro, J. M., and Poulos, T. L., 1992, Conversion of the proximal histidine ligand to glutamine restores activity to an inactive mutant of cytochrome c peroxidase, J. Biol. Chem. 267: 25656–25659.PubMedGoogle Scholar
  100. 100.
    Poulos, T. J., and Kraut, J., 1980, The stereochemistry of peroxidase catalysis, J. Biol. Chem. 255: 8199–8205.PubMedGoogle Scholar
  101. 101.
    Erman, J. E., Vitello, L. B., Miller, M. A., Shaw, A., Brown, K. A., and Kraut, J., 1993, Histidine 52 is a critical residue for rapid formation of cytochrome c peroxidase compound I, Biochemistry 32: 9798–9806.PubMedCrossRefGoogle Scholar
  102. 102.
    Dalziel, K., and O’Brien, J. R. P., 1954, Spectrophotometric studies of the reaction of methaemoglobin with hydrogen peroxide, 1. The formation of methaemoglobin-hydrogen peroxide, Biochem. J. 56: 648–659.PubMedGoogle Scholar
  103. 103.
    George, P., and Irvine, D. H., 1956, A kinetic study of the reaction between ferrimyoglobin and hydrogen peroxide, J. Colloid Sci. 11: 329–339.CrossRefGoogle Scholar
  104. 104.
    Yonetani, T., and Schleyer, H., 1967, Studies on cytochrome c peroxidase. IX. The reaction of ferrimyoglobin with hydroperoxides and a comparison of peroxide-induced compounds of ferrimyoglobin and cytochrome c peroxidase, J. Biol. Chem. 242: 1974–1979.PubMedGoogle Scholar
  105. 105.
    Fox, J. B., Jr., Nicholas, R. A., Ackerman, S. A., and Swift, C. E., 1974, A multiple wavelength analysis of the reaction between hydrogen peroxide and metmyoglobin, Biochemistry 13: 5178–5186.PubMedCrossRefGoogle Scholar
  106. 106.
    Roe, J. A., and Goodin, D. B., 1993, Enhanced oxidation of aniline derivatives by two mutants of cytochrome c peroxidase at tryptophan 51, J. Biol. Chem. 268: 20037–20045.PubMedGoogle Scholar
  107. 107.
    Smith, A. T., Sanders, S. A., Greschik, H., Thorneley, R. N. F., Burke, J. F., and Bray, R. C., 1992, Probing the mechanism of horseradish peroxidase by site-directed mutagenesis, Biochem. Soc. Trans. 20: 340–345.Google Scholar
  108. 108.
    Job, D., and Dunford, H. B., 1976, Substituent effect on the oxidation of phenols and aromatic amines by horseradish peroxidase compound I, Eur. J. Biochem. 66: 607–614.PubMedCrossRefGoogle Scholar
  109. 109.
    DePillis, G. D., Sishta, B. P., Mauk, A. G., and Ortiz de Montellano, P. R., 1991, Small substrates and cytochrome c are oxidized at different sites of cytochrome c peroxidase, J. Biol. Chem. 266: 19334–19341.PubMedGoogle Scholar
  110. 110.
    Ortiz de Montellano, P.R., 1992, Catalytic sites of hemoprotein peroxidases, Annu. Rev. Pharmacol. Toxicol. 32: 89–107.CrossRefGoogle Scholar
  111. 111.
    Raag, R., Swanson, B. A., Poulos, T. L., and Ortiz de Montellano, P. R., 1990, Formation, crystal structure, and rearrangement of a cytochrome P-450cam iron-phenyl complex, Biochemistry 29: 8119–8126.PubMedCrossRefGoogle Scholar
  112. 112.
    Swanson, B. A., Dutton, D. R., Lunetta, J. M., Yang, C. S., and Ortiz de Montellano, P. R., 1991, The active sites of cytochromes P450 IA 1, IIBI, IIB2, and IIEI. Topological analysis by in situ rearrangement of phenyl-iron complexes, J. Biol. Chem. 266: 19258–19264.PubMedGoogle Scholar
  113. 113.
    Ortiz de Montellano, P. R., 1987, Control of the catalytic activity of prosthetic heme by the structure of hemoproteins, Acc. Chem. Res. 20: 289–294.CrossRefGoogle Scholar
  114. 114.
    Sakurada, J., Takahashi, S., and Hosoya, T., 1986, Nuclear magnetic resonance studies on the spatial relationship of aromatic donor molecules to the heme iron of horseradish peroxidase, J. Biol. Chem. 261: 9657–9662.PubMedGoogle Scholar
  115. 115.
    Modi, S., Behere, D. V., and Mitra, S., 1989, Interaction of thiocyanate with horseradish peroxidase. tH and 15N nuclear magnetic resonance studies, J. Biol. Chem. 264: 19677–19684.PubMedGoogle Scholar
  116. 116.
    Goodin, D. B., Davidson, M. G., Roe, J. A., Mauk, A. G., and Smith, M., 1991, Amino acid substitutions at tryptophan-51 of cytochrome c peroxidase: Effects on coordination, species preference for cytochrome c, and electron transfer, Biochemistry 30: 4953–4962.PubMedCrossRefGoogle Scholar
  117. 117.
    Miller, V. P., DePillis, G. D., Ferrer, J. C., Mauk, A. G., and Ortiz de Montellano, R R., 1992, Monooxygenase activity of cytochrome c peroxidase, J. Bio!. Chem. 267: 8936–8942.Google Scholar
  118. 118.
    Smith, A. T., Sanders, S. A., Thorneley, R.N. E, Burke, J. E, and Bray, R. R. C., 1992, Characterisation of a haem active-site mutant of horseradish peroxidase, Phe41-Val, with altered reactivity towards hydrogen peroxide and reducing substrates, Eur. J. Biochem. 207: 507–519.PubMedCrossRefGoogle Scholar
  119. 119.
    MacDonald, T. L., Gutheim, W. G., Martin, R. B., and Guengerich, E R, 1989, Oxidation of substituted N,N-dimethylanilines by cytochrome P-450: Estimation of the effective oxidation potential of cytochrome P-450, Biochemistry 28: 2071–2077.PubMedCrossRefGoogle Scholar
  120. 120.
    Hayashi, Y., and Yamazaki, I., 1979, The oxidation-reduction potentials of compound I/II and II/ferric couples of horseradish peroxidases Az and C, J. Bio!. Chem. 254: 9101–9106.Google Scholar
  121. 121.
    Fee, J. A., and Valentine, J. S., 1977, Chemical and physical properties of superoxide, in: Superoxide and Superoxide Dismutases ( A. M. Michelson, J. M. McCord, and I. Fridovich, eds.), Academic Press, New York, pp. 19–60.Google Scholar
  122. 122.
    Kobayashi, S., Nakano, M., Kimura, T., and Schaap, P.A., 1987, On the mechanism of the peroxidase catalyzed oxygen transfer reaction, Biochemistry 26: 5019–5022.PubMedCrossRefGoogle Scholar
  123. 123.
    Egan, R. W., Gale, R H., Vandenheuvel, W. J., Baptista, E. M., and Kuehl, F. A., 1980, Mechanism of oxygen transfer by prostaglandin hydroperoxidase, J. Biol. Chem. 255: 323–326.PubMedGoogle Scholar
  124. 124.
    Doerge, D. R., and Corbett, M. D., 1991, Peroxygenation mechanism of chloroperoxidase-catalyzed N-oxidation of arylamines, Chem. Res. Toxicol. 4: 556–560.PubMedCrossRefGoogle Scholar
  125. 125.
    Hughes, M. F., Smith, B. J., and Eling, T. E., 1992, The oxidation of 4-aminobiphenyl by horseradish peroxidase, Chem. Res. Toxicol. 5: 340–345.PubMedCrossRefGoogle Scholar
  126. 126.
    Ple, R, and Marnett, L. J.,1989, Alkylaryl sulfides as peroxidase reducing substrates for prostaglandin H synthase: Probes for the reactivity and environment of the ferryl-oxo complex, J. Biol. Chem. 264: 13983–13993.Google Scholar
  127. 127.
    Watanabe, Y., Iyanagi, T., and Oae, S., 1980, Kinetic study on enzymatic S-oxygenation promoted by a reconstituted system with purified cytochrome P-450, Tetrahedron Lett. 21: 3685–3688.CrossRefGoogle Scholar
  128. 128.
    Perez, U., and Dunford, H. B., 1990, Transient-state kinetics of the reactions of 1-methoxy-4(methylthio)benzene with horesradish peroxidase compounds I and II, Biochemistry 29: 2757–2763.PubMedCrossRefGoogle Scholar
  129. 129.
    Casella, L., Gullotti, M., Ghezzi, R., Poli, S., Beringhelli, T., Colonna, S., and Carrea, G., 1992, Mechanism of enantioselective oxygenation of sulfides catalyzed by chloroperoxidase and horseradish peroxidase. Spectral studies and characterization of enzyme-substrate complexes, Biochemistry 31: 9451–9459.PubMedCrossRefGoogle Scholar
  130. 130.
    Doerge, D. R., Cooray, N. M., and Brewster, M. E., 1991, Peroxidase-catalyzed S-oxygenation: Mechanism of oxygen transfer for lactoperoxidase, Biochemistry 30: 8960–8964.PubMedCrossRefGoogle Scholar
  131. 131.
    Ozaki, S.-I., and Ortiz de Montellano, R R., 1994, Molecular engineering of horseradish peroxidase. Highly enantioselective sulfoxidation of aryl alkyl sulfides by the Phe-41— Leu mutant, J. Am. Chem. Soc. 116: 4487–4488.CrossRefGoogle Scholar
  132. 132.
    Blee, E., and Schuber, F., 1989, Mechanism of S-oxidation reactions catalyzed by a soybean hydroperoxide-dependent oxygenase, Biochemistry 28: 4962–4967.CrossRefGoogle Scholar
  133. 133.
    Blee, E., and Schuber, F., 1990, Efficient epoxidation of unsaturated fatty acids by a hydroperoxidedependent oxygenase, J. Biol. Chem. 265: 12887–12894.PubMedGoogle Scholar
  134. 134.
    Blee, E., Wilcox, A. L., Marnett, L. J., and Schuber, F., 1993, Mechanism of reaction of fatty acid hydroperoxides with soybean peroxygenase, J. Biol. Chem. 268: 1708–1715.PubMedGoogle Scholar
  135. 135.
    Hewson, W. D., and Hager, L. R, 1979, Peroxidases, catalases, and chloroperoxidase, in: The Porphyrins. Part B, Vol. 7 ( D. Dolphin, ed.), Academic Press, New York.Google Scholar
  136. 136.
    Griffin, B. W., 1991, Chloroperoxidase: Areview, in: Peroxidases in Chemistry and Biology ( J. Everse, K. E. Everse, and M. B. Grisham, eds.), CRC Press, Boca Raton, FL, pp. 85–137.Google Scholar
  137. 137.
    Samokyszyn, V. M., and Ortiz de Montellano, R R., 1991, Topology of the chloroperoxidase active site: Regiospecificity of heme modification by phenylhydrazine and sodium azide, Biochemistry 30: 11646–11653.PubMedCrossRefGoogle Scholar
  138. 138.
    Vane, J., and Botting, R., 1988, Inflammation and the mechanism of action of anti-inflammatory drugs, FASEB J. 2: 89–96.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Lawrence J. Marnett
    • 1
  • Todd A. Kennedy
    • 1
  1. 1.A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Center in Molecular Toxicology, Departments of Biochemistry and ChemistryVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations