Design Considerations for High-Speed Low-Power Low-Voltage CMOS Analog-to-Digital Converters

  • Thomas B. Cho
  • David W. Cline
  • Cormac S. G. Conroy
  • Paul R. Gray

Abstract

This paper describes architecture and circuit approaches for the design of high-speed, low-power, pipelined analog-to-digital converters in CMOS. The role of pipeline architectures in high--speed conversion is first discussed. Then a number of design issues related to power optimization in pipeline A/D converters are discussed, including power minimization in switched capacitor gain blocks operated on low supply voltages, implementation of transmission gates on low voltages, and capacitor scaling in pipelines. The application of these approaches is illustrated using results from an experimental 10-bit 20-MS/s pipeline A/D converter implemented in 1.2-μm CMOS technology that achieves a power dissipation of 35 mW at full speed operation.

Keywords

Power Dissipation Settling Time Operational Amplifier Parasitic Capacitance Charge Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. H. Lewis, H. S. Fetterman, George F. Gross, Jr., R. Ramachandran, and T. R. Viswanathan, “10-b 20-Msample/s analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 27, pp.351–358, March 1992.CrossRefGoogle Scholar
  2. [2]
    Y.-M. Lin, B. Kim, and P. R. Gray, “A 13-b 2.5MHz self-calibrated pipelined A/D converter in 3-μm CMOS,” IEEE J. Solid-State Circuits, vol. 26, pp. 628–636, Apr. 1991.CrossRefGoogle Scholar
  3. [3]
    T. Cho and P. R. Gray, “A 10-bit, 20MS/s, 35mW Pipeline A/D Converter”, Digest of Technical papers, 1994 Custom Integrated Circuits Conference, May, 1994.Google Scholar
  4. [4]
    K. Bult and G.J.G.M. Geelen, “A fast-settling CMOS opamp with 90-dB DC gain and 116 MHz unity-gain frequency,” ISSCC Dig. Tech. Papers, pp. 108-109, Feb. 1990.Google Scholar
  5. [5]
    Y. Nakagome et al., “Experimental 1.5-V 64-Mb DRAM,” IEEE J. Solid-State Circuits, vol. 26, pp. 465–472, Apr. 1991.CrossRefGoogle Scholar
  6. [6]
    K. Kusumoto, K. Murata, A. Matsuzawa, S. Tada, M. Maruyama, K. Oka, and H. Konishi,” A 10-b 20-MHz 30-mW pipelined interpolating CMOS ADC,” in ISSCC Dig. Tech. Papers, pp. 62-63, Feb. 1993.Google Scholar
  7. [7]
    A. N. Karanicolas, H. Lee, K. L. Bacrania, “A 15-b 1MS/s digitally self-calibrated pipeline ADC,” ISSCC Dig. Tech. Papers, pp. 60-61 Feb. 1993.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Thomas B. Cho
    • 1
  • David W. Cline
    • 1
  • Cormac S. G. Conroy
    • 1
  • Paul R. Gray
    • 1
  1. 1.Department of Electrical Engineering and Computer SciencesUniversity of California at BerkeleyUSA

Personalised recommendations