Construction of Irreducible Polynomials

  • Ian F. Blake
  • XuHong Gao
  • Ronald C. Mullin
  • Scott A. Vanstone
  • Tomik Yaghoobian
Chapter
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 199)

Abstract

This chapter is devoted to the problem of constructing irreducible polynomials over a given finite field. Such polynomials are used to implement arithmetic in extension fields and are found in many applications, including coding theory [5], cryptography [13], computer algebra systems [11], multivariate polynomial factorization [21], and parallel polynomial arithmetic [18].

Keywords

Finite Field Minimal Polynomial Irreducible Polynomial Linearize Polynomial Irreducible Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L.M. Adleman and H.W. Lenstra, “Finding irreducible polynomials over finite fields”, Proceedings of the 18th Annual Acm Symposium on Theory of Computing (1986), 350–355.Google Scholar
  2. [2]
    S. Agou, “Irréductibilité des polynôme f(X pr — aX) sur un corps fini F ps ”, J. Reine Angew. Math., 292 (1977), 191–195.MathSciNetMATHGoogle Scholar
  3. [3]
    S. Agou, “Irréductibilité des polynôme f (X p2r — aX pr — bX) sur un corps fini F(Math)s”, J. Number Theory, 10 (1978), 64–69; 11 (1979), 20.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    S. Agou, “Irréductibilité des polynôme f (Math) sur un corps fini F ps ”, Canad. Math. Bull., 23 (1980), 207–212.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    E.R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.MATHGoogle Scholar
  6. [6]
    I. BlakeGao and R. Mullin, “Factorization of polynomials of the type f (xt)”, presented at the Internat. Conf. on Finite Fields, Coding Theory, and Advances in Comm. and Computing, Las Vegas, Nv, Aug. 1991.Google Scholar
  7. [7]
    I. Blake, S. Gao and R. Mullin, “Explicit factorization of (Math)+1 over Fp with prime p = 3 (mod 4)”, submitted to App. Alg. in Eng., Comm. and Comp., 1992.Google Scholar
  8. [8]
    J.V. Brawley and L. Carlitz, “Irreducibles and the composed product for polynomials over a finite field”, Discrete Math., 65 (1987), 115–139.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    J.V. Brawley and G.E. Schnibben, Infinite Algebraic Extensions of Finite Fields, Contemporary Mathematics, vol. 95, American Math. Soc., Providence, R.I., 1989.CrossRefGoogle Scholar
  10. [10]
    M. Butler, “The irreducible factors of f(x m ) over a finite field”, J. London Math. Soc., 30 (1955), 480–482.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    J. Calmet, “Algebraic algorithms in GF(q)”, Discrete Math., 56 (1985), 101–109.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    D. Cantor, “On arithmetical algorithms over finite fields”, J. of Combinatorial Theory, A 56 (1989), 285–300.MathSciNetCrossRefGoogle Scholar
  13. [13]
    B. Chor and R. Rivest, “A knapsack-type public key cryptosystem based on arithmetic in finite fields”, IEEE Trans. Info. Th., 34 (1988), 901–909.MathSciNetCrossRefGoogle Scholar
  14. [14]
    S. Cohen, “On irreducible polynomials of certain types in finite fields”, Proc. Camb. Phil. Soc., 66 (1969), 335–344.MATHCrossRefGoogle Scholar
  15. [15]
    S. Cohen, “The irreducibility theorem for linearized polynomials over finite fields”, Bull. Austral. Math. Soc., 40 (1989), 407–412.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    S. Cohen, “The explicit construction of irreducible polynomials over finite fields”, Designs, Codes and Cryptography, 2 (1992), 169–174.MATHCrossRefGoogle Scholar
  17. [17]
    S. Cohen, “Primitive elements and polynomials: existence results”, Proc. Internat. Conf. on Finite Fields, Coding Theory, and Advances in Comm. and Computing, Las Vegas, NV Aug. 1991, Lect. Notes in Pure & Appl. Math., Marcel Dekker, to appear.Google Scholar
  18. [18]
    W. Eberly, “Very fast parallel matrix and polynomial arithmetic”, 25th Annual Symposium on Foundations of Computer Science (1984), 21–30.Google Scholar
  19. [19]
    S. Gao, Normal Bases over Finite Fields, Ph.D. thesis, Department of Combinatorics and Optimization, University of Waterloo, in preparation.Google Scholar
  20. [20]
    S. Gao and G. Mullen, “Dickson polynomials and irreducible polynomials”, preprint, 1992.Google Scholar
  21. [21]
    J. von zur Gathen and E. Kaltofen, “Factorization of multivariate polynomials over finite fields”, Math. Comp., 45 (1985), 251–261.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    E. Kaltofen, “Deterministic irreducibility testing of polynomials over large finite fields”, J. Symb. Comp., 4 (1987), 77–82.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge University Press, 1986.MATHGoogle Scholar
  24. [24]
    R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, 1987.Google Scholar
  25. [25]
    H. Meyn, “On the construction of irreducible self-reciprocal polynomials over finite fields”, App. Alg in Eng., Comm. and Comp., 1 (1990), 43–53.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    H. Niederreiter, “An enumeration formula for certain irreducible polynomials with an application to the construction of irreducible polynomials over the binary field”, App. Alg. in Eng., Comm. and Comp., 1 (1990), 119–124.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    A.E. Pellet, “Sur les fonctions irréductibles suivant un module premier et une fonctionaire”, C. R. Acad. Sci. Paris, 70 (1870), 328–330.MATHGoogle Scholar
  28. [28]
    A.E. Pellet, “Sur les fonctions irréductibles suivant un module premier”, C. R. Acad. Sci. Paris, 93 (1881), 1065–1066.Google Scholar
  29. [29]
    M. Rabin, “Probabilistic algorithms in finite fields”, SIAM J. Comput., 9 (1980), 273–280.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    J.A. Serret, Cours d’algèbre supérieure, 3rd ed., Gauthier-Villars, Paris, 1866.Google Scholar
  31. [31]
    J.A. Serret, “Mémoire sur la théorie des congruences suivant un module premier et suivant une fonction modulaire irréductible”, Mém. Acad. Sci. Inst. de France,35 (1866), 617–688.Google Scholar
  32. [32]
    V. Shoup, “On the deterministic complexity of factoring polynomials over finite fields”, Information Processing Letters, 33 (1990), 261–267.MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    V. Shoup, “New algorithms for finding irreducible polynomials over finite fields”, Math. Comp., 54 (1990), 435–447.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    V. Shoup, “Searching for primitive roots in finite fields”, Math. Comp., 58 (1992), 369–380.MathSciNetMATHCrossRefGoogle Scholar
  35. [35]
    R. Varshamov, “A certain linear operator in a Galois field and its ap-plications (Russian)”, Studia Sci. Math. Hungar., 8 (1973), 5–19.Google Scholar
  36. [36]
    R. Varshamov, “Operator substitutions in a Galois field and their application (Russian)”, Dokl. Akad. Nauk SSSR, 211 (1973), 768–771;MathSciNetGoogle Scholar
  37. [36a]
    R. Varshamov, “Operator substitutions in a Galois field and their application (Russian)”, Soviet Math. Dokl., 14 (1973), 1095–1099.MATHGoogle Scholar
  38. [37]
    R. Varshamov, “A general method of synthesizing irreducible polynomials over Galois fields”, Soviet Math. Dokl., 29 (1984), 334–336.MATHGoogle Scholar
  39. [38]
    R. Varshamov and G. Garakov, “On the theory of selfdual polynomials over a Galois field (Russian)”, Bull. Math. Soc. Sci. Math. R. S. Roumanie(N.S.), 13 (1969), 403–415.MathSciNetGoogle Scholar
  40. [39]
    M. Wang, I. Blake and V. Bhargava, “Normal bases and irreducible polynomials in the finite field Gf(2 2r)”, preprint, 1990.Google Scholar
  41. [40]
    D. Wiedemann, “An iterated quadratic extension of Gf(2)”, Fibonacci Quart., 26 (1988), 290–295.MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Ian F. Blake
    • 1
  • XuHong Gao
    • 1
  • Ronald C. Mullin
    • 1
  • Scott A. Vanstone
    • 1
  • Tomik Yaghoobian
    • 1
  1. 1.University of WaterlooCanada

Personalised recommendations