Processing of ceramic matrix composites

  • K. K. Chawla

Abstract

Before describing the techniques for fabricating ceramic matrix composites, we list below some general points that should be considered in selecting the reinforcements and the matrix. Among the items that should be taken into account for choosing a reinforcement and a matrix material are:
  1. 1.

    melting point

     
  2. 2.

    volatility

     
  3. 3.

    density

     
  4. 4.

    elastic modulus

     
  5. 5.

    coefficient of thermal expansion

     
  6. 6.

    creep characteristics

     
  7. 7.

    strength

     
  8. 8.

    fracture toughness

     
  9. 9.
    compatibility between fiber and matrix
    1. (a)

      chemical compatibility

       
    2. (b)

      thermal compatibility (should be able to withstand high-temperature excursions)

       
    3. (c)

      compatibility with the environment, internal as well as external: the external compatibility mainly involves oxidation and evaporation characteristics.

       
     

Keywords

Ceramic Matrix Ceramic Matrix Composite Continuous Fiber Reaction Bonding Chemical Vapor Infiltration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ray, R. and Bordia, R.K. (1989) Acta Met., 1003.Google Scholar
  2. 2.
    Kellett, B. and Lange, F.F. (1989) J. Am. Ceram. Soc., 67, 369.CrossRefGoogle Scholar
  3. 3.
    Bordia, R.K. and Raj, R. (1988) J. Am. Ceram. Soc., 71, 302.CrossRefGoogle Scholar
  4. 4.
    De Jonghe, L.C., Rahaman, M.N. and Hseuh, C.H. (1986) Acta Met., 39, 1467.CrossRefGoogle Scholar
  5. 5.
    Sacks, M.D., Lee, H.W. and Rojas, O.E. (1987) J. Am. Ceram. Soc.,70 C-348.Google Scholar
  6. 6.
    Rahaman, M.N. and De Jonghe, L.C. (1987) J. Am. Ceram. Soc.,70 C-348.Google Scholar
  7. 7.
    Prewo, K.M. (1986) in Tailoring Multiphase and Composite Ceramics, Materials Science Research, Vol. 20, Plenum Press, New York, p. 529.Google Scholar
  8. 8.
    Holm, E.A. and Cima, M.J. (1989) J. Am. Ceram. Soc., 72, 303.CrossRefGoogle Scholar
  9. 9.
    Tiegs, T.N. and Becher, P.F. (1987) Am. Ceram. Soc. Bull., 66, 339.Google Scholar
  10. 10.
    Phillips, D.C. (1983) in Fabrication of Composites, North Holland, Amsterdam, p. 373.Google Scholar
  11. 11.
    Cornie, J.A., Chiang, Y-M., Uhlmann, D.R. et al. (1986) Am. Ceramic Soc. Bull. 65, 293.Google Scholar
  12. 12.
    Prewo, K.M. and Brennan, J.J. (1980) J. Mater. Sci., 15, 463.CrossRefGoogle Scholar
  13. 13.
    Brennan, J.J. and Prewo, K.M. (1982) J. Mater. Sci., 17, 2371.CrossRefGoogle Scholar
  14. 14.
    Sambell, R.A.J., Phillips, D.C. and Bowen, D.H. (1974) in Carbon Fibers: Their Place in Modern Technology,The Plastics Institute, London.Google Scholar
  15. 15.
    Briggs, A. and Davidge, R.W. (1988) in Whisker-and Fiber-Toughened Ceramics, ASM International, Materials Park, Ohio, p. 153.Google Scholar
  16. 16.
    Bhatt, R.T. (1986) NASA TN-88814.Google Scholar
  17. 17.
    Bhatt, R.T. (1990) J. Mater. Sci., 25, 3401.CrossRefGoogle Scholar
  18. 18.
    Kandori, T., Ukyo, Y. and Wada, S. (1988) in Whisker-and Fiber Toughened Ceramics, ASM International, Materials Park, Ohio, p. 125.Google Scholar
  19. 19.
    Liu, H.Y., Claussen, N., Hoffmann, M.J. and Petzow, G. (1991) J. Eur. Ceram. Soc. 7, (1991) 41.CrossRefGoogle Scholar
  20. 20.
    Barclay, S.J., Fox, J.R. and Bowen, H.K. (1987) J. Mater. Sci. 22 4403.Google Scholar
  21. 21.
    Yang, M. and Stevens, R. (1990) J. Mater. Sci., 25, 4658.CrossRefGoogle Scholar
  22. 22.
    Homeny, J., Vaughn, W.L. and Ferber, M.K. (1987) Am. Ceram. Soc. Bull., 67, 333.Google Scholar
  23. 23.
    Shalek, P.D., Petrovic, J.J., Hurley, G.F. and Gac, F.D. (1986) Am. Ceram. Soc. Bull., 65, 351.Google Scholar
  24. 24.
    Hillig, W.B. (1988) J. Am. Ceram. Soc.,71 C-96.Google Scholar
  25. 25.
    Nourbakhsh, S. and Margolin, H. (1989) Met. Trans. 20A, 2159.CrossRefGoogle Scholar
  26. 26.
    Nourbakhsh, S., Liang, F.L. and Margolin, H. (1990) Met. Trans. 21A, 213.CrossRefGoogle Scholar
  27. 27.
    Johnson, S.M., Rowcliffe, D.J. and Cinibulk, M.K. (1987) in Ceramic Microstructure ‘86, Plenum Press, New York, p. 633.Google Scholar
  28. 28.
    Urquhart, A.W. (1991) Mater. Sci. Eng., A144, 75.CrossRefGoogle Scholar
  29. 29.
    Fitzer, E. and Hegen, D. (1979) Angew. Chem., 91, 316.CrossRefGoogle Scholar
  30. 30.
    Fitzer, E. and Schlichting, J. (1980) Z. Weskstoff Technik, 11, 330.Google Scholar
  31. 31.
    Fitzer, E. and Gadow, R. (1986) Am. Ceram. Soc. Bull., 65, 326.Google Scholar
  32. 32.
    Stinton, D.P., Caputo, A.J. and Lowden, R.A. (1986) Am. Ceram. Soc. Bull., 65, 347.Google Scholar
  33. 33.
    Burkland, C.V., Bustamante, W.E., Klacka, R. and Yang, J.-M. (1988) in Whisker-and Fiber-Toughened Ceramics, ASM Intl., Materials Park, Ohio, p. 225.Google Scholar
  34. 34.
    Colmet, R., Lhermitte-Sebire, I. and Naslain, R. (1986) Adv. Ceram. Mater., 1, 185.Google Scholar
  35. 35.
    Middleman, S. (1989) J. Mater. Res. 4, 1515.CrossRefGoogle Scholar
  36. 36.
    Currier, R.P. (1990) J. Am. Ceram. Soc., 73, 2274.CrossRefGoogle Scholar
  37. 37.
    Tai, N.H. and Chou, T.W. (1989) J. Am. Ceram. Soc., 72, 414.CrossRefGoogle Scholar
  38. 38.
    Tai, N.H. and Chou, T.W. (1990) J. Am. Ceram. Soc., 73, 1498.CrossRefGoogle Scholar
  39. 39.
    Chung, G.Y. and Chou, T.W. (1991) J. Am. Ceram. Soc., 74, 746.CrossRefGoogle Scholar
  40. 40.
    Stinton, D.P. (1987) in Proceedings 10th International Conference on Chemical Vapor Deposition, The Electrochemical Society, Pennington, NJ, 1028.Google Scholar
  41. 41.
    Starr, T.L. (1987) in Proceedings 10th International Conference on Chemical Vapor Deposition, The Electrochemical Society, Pennington, NJ, 1147. 36.Google Scholar
  42. 42.
    Forrest, C.W., Kennedy, P. and Shennan, J.V. (1972) Special Ceramics, Vol. 5, British Ceramic Research Association, Stoke-on-Trent, UK, p. 99.Google Scholar
  43. 43.
    Willermet, P.A., Pett, R.A. and Whalen, T.J. (1978) Am. Ceram. Soc. Bull., 57, 744.Google Scholar
  44. 44.
    Hillig, W.B., Mehan, R.L., Morelock, C.R. et al. (1975) Amer. Ceram. Soc. Bull., 54, 1054.Google Scholar
  45. 45.
    Hyde, A.R. (1989) GEC J. Res. 7, 65.Google Scholar
  46. 46.
    Lewis, D. (1991) in Metal Matrix Composites: Processing and Interfaces, Academic Press, Boston, p. 121.Google Scholar
  47. 47.
    Brindley, P.K., Bartolotta, P.A. and Klima, S.J. (1988) Investigation of a SiC/Ti24A1–11Nb/SiS Composite, NASA TM-100956.Google Scholar
  48. 48.
    Thadhani, N.N., Chawla, N. and Kibbe, W. (1991) J. Mater. Sci., 26, 232.CrossRefGoogle Scholar
  49. 49.
    Stoloff, N.S. and Alman, D.E. (1990) Mat. Res. Soc. Symp. Proc. Vol. 194, Materials Research Society, Pittsburgh, p. 31.Google Scholar

Copyright information

© K. K. Chawla 1993

Authors and Affiliations

  • K. K. Chawla
    • 1
  1. 1.Department of Materials and Metallurgical EngineeringNew Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations