The Prokaryotes pp 3754-3774 | Cite as

The Family Chloroflexaceae

  • Beverly K. Pierson
  • Richard W. Castenholz

Abstract

The discovery of the photosynthetic flexibacteria was made by Pierson and Castenholz (1971), and Chloroflexus aurantiacus was the first genus and species described (Pierson and Castenholz, 1974a). The Chloroflexaceae was proposed as a family (Trüper, 1976) with affinities to the Chlorobiaceae. The similarities with the green sulfur bacteria were signified by grouping both families under the suborder Chlorobiineae. The family was defined as follows: filamentous, phototrophic bacteria with gliding motility, Gram-negative, flexible cell walls, and bacteriochlorophyll (bchl) a and bchl c, d, or e. Included in the family were two other genera, “Oscillochloris” and Chloronema.

Keywords

Purple Bacterium Green Sulfur Bacterium Phototrophic Bacterium Purple Nonsulfur Bacterium Green Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anderson, K. L., Tayne, T. A., and Ward, D. M. 1987. Formation and Fate of Fermentation Products in Hot Spring Cyanobacterial Mats. Appl. Environ. Microbiol. 53: 2343–2352.PubMedPubMedCentralGoogle Scholar
  2. Avissar, Y. J., Ormerod, J. G., and Beale, S. I. 1989. Distribution of ó-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups. Arch. Microbiol. 151: 513–519.PubMedGoogle Scholar
  3. Bateson, M. M., and Ward, D. M. 1988. Photoexcretion and Fate of Glycolate in a Hot Spring Cyanobacterial Mat. Appl. Environ. Microbiol. 54: 1738–1743.PubMedPubMedCentralGoogle Scholar
  4. Bauld, J., and Brock, T. D. 1974. Algal excretion and bacterial assimilation in hot spring algal mats. J. Phycol. 10: 101–106.Google Scholar
  5. Beyer, P., Falk, H. and Kleinig, H. 1983. Particulate Fractions from Chloroflexus aurantiacus and Distribution of Lipids and Polyprenoid Forming Activities. Arch. Microbiol. 134: 60–63.Google Scholar
  6. Blankenship, R. E., Feick, R., Bruce, B. C., Kirmaier, C., Holten, D., and Fuller, R. C. 1983. Primary photochemistry in the facultative green photosynthetic bacterium Chloroflexus aurantiacus. J. Cell. Biol. 22: 25 1261.Google Scholar
  7. Blankenship, R. E., Mancino, L. J., Feick, R., Fuller, R. C., Machnicki, J., Frank, H. A., Kirmaier, C., and Holten, D. 1984. Primary photochemistry and pigment corn-position of reaction centers isolated from the green photosynthetic bacterium Chloroflexus aurantiacus, p. 203–206. In: Sybesma, C. (ed.), Advances in Photosynthesis Research. ( The Hague: M. Nijhoff/Dr. W. Junk ).Google Scholar
  8. Brock, T. D. 1978. Thermophilic microorganisms and life at high temperatures. New York: Springer-Verlag.Google Scholar
  9. Bruce, B. D., Fuller, R. C., and Blankenship, R. E. 1982. Primary photochemistry in the facultatively aerobic green photosynthetic bacterium Chloroflexus aurantiacus. Proc. Natl. Acad. Sci. USA 79: 6532–6536.PubMedPubMedCentralGoogle Scholar
  10. Brune, D. C., King, G. H., Infosino, A., Steiner, T., Thewalt, M. L. W. and Blankenship, R. E. 1987. Antenna Organization in Green Photosynthetic Bacteria. 2. Excitation Transfer in Detached and Membrane-Bound Chlorosomes from Chloroflexus aurantiacus. Biochemistry 26: 8652–8658.PubMedGoogle Scholar
  11. Cardoso, J. N., Watts. C. D., Maxwell, J. R., Goodfellow, R., Eglinton, G., and Golubic, S. 1978. A biogeochemical study of the Abu Dhabi algal mats: a simplified ecosystem. Chem. Geol. 23: 273–291.Google Scholar
  12. Castenholz, R. W. 1973a. Ecology of blue-green algae in hot springs, p. 379–414. In: Carr, N. G. and Whitton, B. A. (ed.), The Biology of Blue-Green Algae. Oxford: Blackwell.Google Scholar
  13. Castenholz, R. W. 1973b. The possible photosynthetic use of sulfide by the filamentous phototrophic bacteria of hot springs. Limnol. Oceanogr. 18: 863–876.Google Scholar
  14. Castenholz, R. W. 1984. Composition of Hot Spring Microbial Mats: A Summary, p. 101–119. Cohen, Y., Castenholz, R. W. and Halvorson, H. O. (ed.), Microbial Mats: Stromatolites. New York: Alan R. Liss, Inc.Google Scholar
  15. Castenholz, R. W. 1988a. Culturing methods (cyanobacteria), p. 68–93. In: Packer, L. and Glazer, A. N. (ed.), Methods in Enzymology: Cyanobacteria, vol. 167. San Diego: Academic Press.Google Scholar
  16. Castenholz, R. W. 1988b. The Green Sulfur and Nonsulfur Bacteria of Hot Springs, p. 243–255. In: Olson, J. M., Ormerod, J. G., Amesz, J., Stackebrandt, E., and Tit-per, H. G. (ed.), Green Photosynthetic Bacteria. New York: Plenum Press.Google Scholar
  17. Castenholz, R. W. 1988c. Thermophilic cyanobacteria: special problems, p. 96–100. In: Packer, L. and Glazer, A. N. (ed.), Methods in Enzymology: Cyanobacteria, vol. 167. San Diego: Academic Press.Google Scholar
  18. Castenholz, R. W. 1989. Genus Chloroflexus, p. 1698–1702. In: Staley, J. T., Bryant, M. P., Pfennig, N., and Holt, J. G. (ed.), Bergey’s manual of systematic bacteriology. vol. 3. Baltimore: Williams and Wilkins.Google Scholar
  19. Castenholz, R. W., and Pierson, B. K. 1981. Isolation of members of the family Chloroflexaceae, p. 290–298. In: Starr, M. P., Stolp, H., Trüper, H. G., Balows, A., and Schlegel, H. G. (ed.), The prokaryotes. New York: Springer-Verlag.Google Scholar
  20. Castenholz, R. W., and Pierson, B. K. 1989. Genus Heliothrix, p. 1702–1703. In: Staley, J. T., Bryant, M. P., Pfennig, N., and Holt, J. G. (ed.), Bergey’s manual of systematic bacteriology, vol. 3. Baltimore: Williams and Wilkins.Google Scholar
  21. Claus, D., and Schaab-Engels, C. 1977. Catalogue of strains, 2nd ed. Munich: German Collection of Microorganisms, Gesellschaft für Strahlen-und Umweltforschung MBH.Google Scholar
  22. Cohen, Y. 1984. The Solar Lake Cyanobacterial Mats: Strategies of Photosynthetic Life Under Sulfide, p. 133–148. In: Cohen, Y., Castenholz, R. W., and Halvorson, H. O. (ed.), Microbial Mats: Stromatolites. New York: Alan R. Liss, Inc.Google Scholar
  23. D’Amelio, E. D., Cohen, Y., and Des Marais, D. J. 1987. Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Micro-coleus chthonoplastes in hypersaline cyanobacterial mats. Arch. Microbiol. 147: 213–220.PubMedGoogle Scholar
  24. D’Amelio, E. D., Cohen, Y., and Des Marais, D. J. 1989. Comparative Functional Ultrastructure of Two Hypersaline Submerged Cyanobacterial Mats: Guerrero Negro, Baja California Sur, Mexico, and Solar Lake, Sinai, Egypt, p. 97–113. In: Cohen, Y. and Rosenberg, E. (ed.), Microbial Mats: Physiological Ecology of Benthic Microbial Communities. Washington, DC.: Amer. Soc. Microbiol.Google Scholar
  25. Doemel, W. N., and Brock, T. D. 1977. Structure, Growth, and Decomposition of Laminated Algal-Bacterial Mats in Alkaline Hot Springs. Appl. Environ. Microbiol. 34: 433–452.PubMedPubMedCentralGoogle Scholar
  26. Drutschmann, M., and Klemme, J. -H. 1985. Sulfide-repressed, membrane-bound hydrogenase in the thermophilic facultative phototroph, Chloroflexus aurantiacus. FEMS Microbiol. Lett. 28: 231–235.Google Scholar
  27. Dubinina, G. A., and Gorlenko, V. M. 1975. New filamentous photosynthtic green bacteria containing gas vacuoles. Microbiology (Eng. transi. of Mikrobiologiya) 44: 452–458.Google Scholar
  28. Feick, R. G., Fitzpatrick, M., and Fuller, R. C. 1982. Isolation and Characterization of Cytoplasmic Membranes and Chlorosomes from the Green Bacterium Chloroflexus aurantiacus. J. Bacteriol. 150: 905–915.PubMedPubMedCentralGoogle Scholar
  29. Foster, J. M., Redlinger, T. E., Blankenship, R. E., and Fuller, R. C. 1986. Oxygen Regulation of Development of the Photosynthetic Membrane System in Chloroflexus aurantiacus. J. Bacteriol. 167: 655–659.PubMedPubMedCentralGoogle Scholar
  30. Gicklhorn, J. 1921. Über den Blauglanz zweier neuer Oscillatorien. Österreichische Botanische Zeitschrift 70:1–11.Google Scholar
  31. Giovannoni, S. J., Revsbech, N. P., Ward, D. M., and Castenholz, R. W. 1987. Obligately phototrophic Chloroflexus: primary production in anaerobic hot spring microbial mats. Arch. Microbiol. 147: 80–87.Google Scholar
  32. Gloe, A., and Risch, N. 1978. Bacteriochlorophyll c„ a new bacteriochlorophyll from Chloroflexus aurantiacus. Arch. Microbiol. 118: 153–156.PubMedGoogle Scholar
  33. Golecki, J. R., and Oelze, J. 1987. Quantitative relationship between bacteriochlorophyll content, cytoplasmic membrane structure and chlorosome size in Chloroflexus aurantiacus. Arch. Microbiol. 148: 236–241.Google Scholar
  34. Gorlenko, V. M. 1976. Characteristics of filamentous phototrophic bacteria from freshwater lakes. Mikrobiologiya (Engl. transi.) 44: 682–684.Google Scholar
  35. Gorlenko, V. M. 1988. Ecological Niches of Green Sulfur and Gliding Bacteria, p. 257–267. In: Olson, J. M., Ormerod, J. G., Amesz, J., Stackebrandt, E. and Trüper, H. G. (ed.), Green Photosynthetic Bacteria. New York: Plenum Press.Google Scholar
  36. Gorlenko, V. M. 1989a. Genus “Oscillochloris,” p. 17031706. In: Staley, J. T., Bryant, M. P., Pfennig, N., and Holt, J. G. (ed.), Bergey’s manual of systematic bacteriology, vol. 3. Baltimore: Williams and Wilkins.Google Scholar
  37. Gorlenko, V. M. 1989b. Genus Chloronema, p. 1706–1707. In: Staley, J. T., Bryant, M. P., Pfennig, N., and Holt, J. G. (ed.), Bergey’s manual of systematic bacteriology, vol. 3. Baltimore: Williams and Wilkins.Google Scholar
  38. Gorlenko, V. M., and Pivovarova, T. A. 1977. On the belonging of bluegreen alga Oscillatoria coerulescens Gicklhorn, 1921 to a new genus of Chlorobacteria Oscillochloris nov. gen. Izvestiya Akademii Nauk SSSR, Seriya Biologicheskaya 3: 396–409.Google Scholar
  39. Griebenow, K., and Holzwarth, A. R. 1989. Pigment organization and energy transfer in green bacteria. 1. Isolation of native chlorosomes free of bound bacteriochlorophyll a from Chloroflexus aurantiacus by gelelectrophoretic filtration. Biochim. Biophys. Acta 973: 235–240.Google Scholar
  40. Hale, M. B., Blankenship, R. E. and Fuller, R. C. 1983. Menaquinone is the sole quinone in the facultatively aerobic green photosynthetic bacterium Chloroflexus aurantiacus. Biochim. Biophys. Acta 723: 376–382.Google Scholar
  41. Halfen, L. N., Pierson, B. K., and Francis, G. W. 1972. Carotenoids of a gliding organism containing bacteriochlorophylls. Arch. Mikrobiol. 82: 240–246.Google Scholar
  42. Hartmann, R. K., Wolters, J., Kröger, B., Schultze, S., Specht, T. and Erdmann, V. A. 1989. Does Thermus Represent Another Deep Eubacterial Branching? System. Appl. Microbiol. 11: 243–249.Google Scholar
  43. Heda, G. D., and Madigan, M. T. 1986. Utilization of Amino Acids and Lack of Diazotrophy in the Thermophilic anoxygenic Phototroph Chloroflexus aurantiacus. J. Gen. Microbiol. 132: 2469–2473.Google Scholar
  44. Hob, H. 1989. Chloroflexus aurantiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO, and acetate. Arch. Microbiol. 151: 252–256.Google Scholar
  45. Hob, H., and Grace, D. 1987. Polyglucose synthesis in Chloroflexus aurantiacus studied by 13C-NMR. Arch. Microbiol. 148: 292–297.Google Scholar
  46. Hob, H., and Grace, D. 1988. A New CO, Fixation Mechanism in Chloroflexus aurantiacus Studied by 13C-NMR, p. 149–155. In: Olson, J. M., Ormerod, J. G., Amesz, J., Stackebrandt, E. and Trüper, H. G. (ed.), Green Photosynthetic Bacteria. New York: Plenum Press.Google Scholar
  47. Holo, H., and Sirevg, R. 1986. Autotrophic growth and CO2 fixation of Chloroflexus aurantiacus. Arch. Microbiol. 145: 173–180.Google Scholar
  48. Imhoff, J. E 1988. Lipids, Fatty Acids and Quinones in Taxonomy and Phylogeny of Anoxygenic Phototrophic Bacteria, p. 223–232. In: Olson, J. M., Ormerod, J. G., Amesz, J., Stackebrandt, E. and Trüper, H. G. (ed.), Green Photosynthetic Bacteria. New York: Plenum Press.Google Scholar
  49. Jorgensen, B. B., and Nelson, D. C. 1988. Bacterial Zonation, Photosynthesis, and Spectral Light Distribution in Hot Spring Microbial Mats of Iceland. Microb. Ecol. 16: 133–147.PubMedGoogle Scholar
  50. Jürgens, U. J., Meißner, J., Fischer, U., König, W. A., and Weckesser, J. 1987. Ornithine as a constituent of the peptidoglycan of Chloroflexus aurantiacus, diaminopimelic acid in that of Chlorobium vibrioforme f. thiosulfatophilum. Arch. Microbiol. 148: 72–76.Google Scholar
  51. Kaulen, H., and Klemme, J. -H. 1983. No evidence of covalent modification of glutamine synthetase in the thermophilic phototrophic bacterium Chloroflexus aurantiacus. FEMS Microbiol. Lett. 20: 75–79.Google Scholar
  52. Kelly, D. J. 1988. Kinetic and Regulatory Properties of Citrate Synthase from the Thermophilic Green Gliding Bacterium Chloroflexus aurantiacus, p. 157–164. In: Olson, J. M., Ormerod, J. G., Amesz, J., Stackebrandt, E. and Trüper, H. G. (ed.), Green Photosynthetic Bacteria. New York: Plenum Press.Google Scholar
  53. Kenyon, C. N., and Gray, A. M. 1974. Preliminary analysis of lipids and fatty acids of green bacteria and Chloroflexus aurantiacus. J. Bacteriol. 120: 131–138.PubMedPubMedCentralGoogle Scholar
  54. Kern, M., and Klemme, J. -H. 1989. Inhibition of Bacteriochlorophyll Biosynthesis by Gabaculin (3-Amino, 2,3-dihydrobenzoic Acid) and Presence of an Enzyme of the CS-Pathway of ö-Aminolevulinate Synthesis in Chloroflexus aurantiacus. Z. Naturforsch. 44c: 77–80.Google Scholar
  55. Kirmaier, C., Holten, D., Feick, R., and Blankenship, R. E. 1983. Picosecond measurements of the primary photochemical events in reaction centers isolated from the facultative green photosynthetic bacterium Chloroflexus aurantiacus. Comparison with the purple bacterium Rhodopseudomonas sphaeroides. FEBS Lett. 158: 73–78.Google Scholar
  56. Kleinig, H., and Reichenbach, H. 1977. Carotenoid glucosides and menaquinones from the gliding bacterium Herpetosiphon giganteus Hp a2. Arch. Microbiol. 112: 307–310.PubMedGoogle Scholar
  57. Klemme, J. -H. 1989. Organic nitrogen metabolism of phototrophic bacteria. Anton Leeuwenhoek J. Microbiol. 55: 197–219.Google Scholar
  58. Klemme, J. -H., Laakmann-Ditges, G., and Mertschuweit, J. 1988. Ammonia Assimulation and Amino Acid Metabolism in Chloroflexus aurantiacus, p. 173–174. In: Olson, J. M., Ormerod, J. G., Amesz, J., Stackebrandt, E., and Trüper, H. G. (ed.), Green Photosynthetic Bacteria. New York: Plenum Press.Google Scholar
  59. Knaff, D. B., Wynn, R. M., Redlinger, T. E., Blankenship, R. E., Foster, J. M., Shaw, R. W., and Fuller, R. C. 1988. Electron Transport Chains of Phototrophically and Chemotrophically Grown Chloroflexus aurantiacus, p. 145–147. In: Olson, J. M., Ormerod, J. G., Amesz, J., Stackebrandt, E., and Trüper, H. G. (ed.), Green Photosynthetic Bacteria. New York: Plenum Press.Google Scholar
  60. Knudsen, E., Jantzen, E., Bryn, K., Ormerod, J. G., and Sirevâg, R. 1982. Quantitative and Structural Characteristics of Lipids in Chlorobium and Chloroflexus. Arch. Microbiol. 132: 149–154.Google Scholar
  61. Kondrat’eva, E. N., and Krasil’nikova, E. N. 1988. Utilization of Thiosulfate by Chloroflexus aurantiacus. Mikrobiologiya (Engl. transi.) 57: 291–294.Google Scholar
  62. Krasil’nikova, E. N. 1987. ATP Sulfurylase Activity in Chloroflexus aurantiacus and Other Photosynthesizing Bacteria as a Function of Temperature. Mikrobiologiya (Engl. transi.) 55: 418–421.Google Scholar
  63. Krasil’nikova, E. N., Keppen, O. I., Gorlenko, V. M., and Kondrat’eva, E. N. 1986. Growth of Chloroflexus aurantiacus on Media with Different Organic Compounds and Pathways of Their Metabolism. Mikrobiologiya (Engl. transl.) 55: 325–329.Google Scholar
  64. Krasil’nikova, E. N., and Kondrat’eva, E. N. 1987. Growth of Chloroflexus aurantiacus Under Anaerobic Conditions in the Dark and the Metabolism of Organic Substrates. Mikrobiologiya (Engl. transl.) 56: 281–285.Google Scholar
  65. Laakmann-Ditges, G., and Klemme, J. -H. 1986. Occurrence of two L-threonine (L-serine) dehydratases in the thermophile Chloroflexus aurantiacus. Arch. Microbiol. 144: 219–221.Google Scholar
  66. Laakmann-Ditges, G., and Klemme, J. -H. 1988. Amino acid metabolism in the thermophilic phototroph, Chloroflexus aurantiacus: properties and metabolic role of two L-threonine (L-serine) dehydratases. Arch. Microbiol. 149: 249–254.Google Scholar
  67. Laken, O.,and Sirevâg, R. 1982. Evidence for the Presence of the Glyoxylate Cycle in Chloroflexus. Arch. Microbiol. 132:276–279.Google Scholar
  68. Mack, E. E., and Pierson, B. K. 1988. Preliminary Characterization of a Temperate Marine Member of the Chloroflexaceae, p. 237–241. In: Olson, J. M., Ormerod, J. G., Amesz, J., Stackebrandt, E., and Trüper, H. G. (ed.), Green Photosynthetic Bacteria. New York: Plenum Publ. Corp.Google Scholar
  69. Madigan, M. T., and Brock, T. D. 1975. Photosynthetic Sulfide Oxidation by Chloroflexus aurantiacus, a Filamentous, Photosynthetic, Gliding Bacterium. J. Bacteriol. 122: 782–784.PubMedPubMedCentralGoogle Scholar
  70. Madigan, M. T., and Brock, T. D. 1977a. CO, Fixation in Photosynthetically-Grown Chloroflexus aurantiacus. FEMS Microbiol. Lett. 1: 301–304.Google Scholar
  71. Madigan, M. T., and Brock, T. D. 1977b. Adaptation by Hot Spring Phototrophs to Reduced Light Intensities. Arch. Microbiol. 113: 111–120.PubMedGoogle Scholar
  72. Madigan, M. T., Petersen, S. R., and Brock, T. D. 1974. Nutritional Studies on Chloroflexus, a Filamentous Photosynthetic, Gliding Bacterium. Arch. Microbiol. 100: 97–103.Google Scholar
  73. Norgaard, E., Sirevâg, R., and Eliassen, K. A. 1983. Evidence for the occurrence of sym-homospermidine in green phototrophic bacteria. FEMS Microbiol. Lett. 20: 159–161.Google Scholar
  74. Oelze, J., and Fuller, R. C. 1983. Temperature Dependence of Growth and Membrane-Bound activities of Chloroflexus aurantiacus Energy Metabolism. J. Bacteriol. 155: 90–96.PubMedPubMedCentralGoogle Scholar
  75. Oelze, J., and Fuller, R. C. 1987. Growth rate and control of development of the photosynthetic apparatus in Chloroflexus aurantiacus. Arch. Microbiol. 148: 13 2136.Google Scholar
  76. Ovchinnikov, Y. A., Abdulaev, N. G., Zolotarev, A. S., Shmukler, B. E., Zargarov, A. A., Kutuzov, M. A., Telezhinskaya, I. N., and Levina, N. B. 1988a. Photosynthetic reaction centre of Chloroflexus aurantiacus. I. Primary structure of L-subunit. FEBS Lett. 231: 237242.Google Scholar
  77. Ovchinnikov, Y. A., Abdulaev, N. G., Shmukler, B. E., Zargarov, A. A., Kutuzov, M. A., Telezhinskaya, I. N., Lev-Google Scholar
  78. ina, N. B., and Zolotarev, A. S. 1988b. Photosynthetic reaction centre of Chloroflexus aurantiacus. II. Primary structure of M-subunit. FEBS Lett. 232: 364–368.Google Scholar
  79. Oyaizu, H., Debrunner-Vossbrinck, B., Mandelco, L., Studier, J. A., and Woese, C. R. 1987. The Green Non-Sulfur Bacteria: A Deep Branching in the Eubacterial Line of Descent. System. Appl. Microbiol. 9: 47–53.Google Scholar
  80. Palmisano, A. C., Cronin, S. E., D’Amelio, E. D., Munoz, E., and Des Marais, D. J. 1989. Distribution and Survival of Lipophilic Pigments in a Laminated Microbial Mat Community near Guerrero Negro, Mexico, p. 138152. In: Cohen, Y. and Rosenberg, E. (ed.), Microbial Mats: Physiological Ecology of Benthic Microbial Communities. Washington, DC.: Amer. Soc. Microbiol.Google Scholar
  81. Pfennig, N. 1965. Anreicherungskulturen für rote und grüne Schwefelbakterien. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten, und Hygiene, Abt. 1, Suppl. 1: 179–189.Google Scholar
  82. Pfennig, N. 1989. Multicellular filamentous green bacteria, p. 1697. In: Staley, J. T., Bryant, M. P., Pfennig, N., and Holt, J. G. (ed.), Bergey’s manual of systematic bacteriology, vol. 3. Baltimore: Williams and Wilkins.Google Scholar
  83. Pfennig, N., and Lippert, K. D. 1966. Über das Vitamin B12- Bedürfnis phototropher Schwefelbakterien. Arch. Mikrobiol. 55: 245–256.Google Scholar
  84. Pierson, B. K. 1973. The characterization of gliding filamentous phototrophic bacteria. PhD. thesis. University of Oregon, Eugene, Oregon.Google Scholar
  85. Pierson, B. K. 1985. Cytochromes in Chloroflexus aurantiacus grown with and without oxygen. Arch. Microbiol. 143: 260–265.Google Scholar
  86. Pierson, B. K., and Castenholz, R. W. 1971. Bacteriochlorophylls in gliding filamentous prokaryotes from hot springs. Nature 233: 25–27.Google Scholar
  87. Pierson, B. K., and Castenholz, R. W. 1974a. A Phototrophic Gliding Filamentous Bacterium of Hot Springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch. Microbiol. 100: 5–24.PubMedGoogle Scholar
  88. Pierson, B. K., and Castenholz, R. W., 1974b. Studies of Pigments and Growth in Chloroflexus aurantiacus, a Phototrophic Filamentous Bacterium. Arch. Microbiol. 100: 283–305.Google Scholar
  89. Pierson, B. K., Giovannoni, S. J., and Castenholz, R. W. 1984. Physiological Ecology of a Gliding Bacterium Containing Bacteriochlorophyll a. Appl. Environ. Microbiol. 47: 576–584.PubMedPubMedCentralGoogle Scholar
  90. Pierson, B. K., Giovannoni, S. J., Stahl, D. A., and Casten-holz, R. W. 1985. Heliothrix oregonensis, gen. nov., sp. nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophyll a. Arch. Microbiol. 142: 164–167.Google Scholar
  91. Pierson, B. K., and Howard, H. M. 1972. Detection of bacteriochlorophyll-containing microorganisms by infrared fluorescence photomicrography. J. Gen. Microbiol. 73: 359–363.Google Scholar
  92. Pierson, B. K., and Thornber, J. P. 1983. Isolation and spectral characterization of photochemical reaction centers from the thermophilic green bacterium Chloroflexus aurantiacus strain J-10-fl. Proc. Natl. Acad. Sci. USA 80: 80–84.PubMedPubMedCentralGoogle Scholar
  93. Pierson, B. K., Thornber, J. P., and Seftor, R. E. B. 1983. Partial Purification, Subunit Structure and Thermal Stability of the Photochemical Reaction Center of the Thermophilic Green Bacterium Chloroflexus aurantiacus. Biochim. Biophys. Acta 723: 322–326.Google Scholar
  94. Pivovarova, T. A., and Gorlenko, V. M. 1977. Fine structure of Chloroflexus aurantiacus var. mesophilus (Nom. prof.) grown in light under aerobic and anaerobic conditions. Microbiology (Eng. transl. of Mikrobiologiya) 46: 276–282.Google Scholar
  95. Revsbech, N. P., and Ward, D. M. 1984. Microelectrode Studies of Interstitial Water Chemistry and Photosynthetic Activity in a Hot Spring Microbial Mat. Appl. Environ. Microbiol. 48: 270–275.PubMedPubMedCentralGoogle Scholar
  96. Schmidt, K. 1980. A Comparative Study on the Composition of Chlorosomes (Chlorobium Vesicles) and Cytoplasmic Membranes from Chloroflexus aurantiacus Strain Ok-70-fl and Chlorobium limicola f. thiosulfatophilum Strain 6230. Arch. Microbiol. 124: 21–31.Google Scholar
  97. Schmidt, K., Maarzahl, M., and Mayer, E 1980. Development and Pigmentation of Chlorosomes in Chloroflexus aurantiacus Strain Ok-70-fl. Arch. Microbiol. 127: 87–97.Google Scholar
  98. Shiozawa, J. A., Lottspeich, E, and Feick, R. 1987. The photochemical reaction center of Chloroflexus aurantiacus is composed of two structurally similar polypeptides. Eur. J. Biochem. 167: 595–600.PubMedGoogle Scholar
  99. Shiozawa, J. A., Lottspeich, F., Oesterhelt, D., and Feick, R. 1989. The primary structure of the Chloroflexus aurantiacus reaction-center polypeptides. Eur. J. Biochem. 180: 75–84.PubMedGoogle Scholar
  100. Sirevâg, R. 1975. Photoassimilation of acetate and metabolism of carbon-hydrate in Chlorobium thiosulfatophilum. Arch. Microbiol. 104: 105–111.PubMedGoogle Scholar
  101. Sirevâg, R., and Castenholz, R. W. 1979. Aspects of Carbon Metabolism in Chloroflexus. Arch. Microbiol. 120: 151153.Google Scholar
  102. Sprague, S. G., Staehelin, L. A., DiBartolomeis, M. J., and Fuller, R. C. 1981a. Isolation and Development of Chlorosomes in the Green Bacterium Chloroflexus aurantiacus. J. Bacteriol. 147: 1021–1031.PubMedPubMedCentralGoogle Scholar
  103. Sprague, S. G., Staehelin, L. A., and Fuller, R. C. 198 lb. Semiaerobic Induction of Bacteriochlorophyll Synthesis in the Green Bacterium Chloroflexus aurantiacus. J. Bacteriol. 147: 1032–1039.Google Scholar
  104. Staehelin, L. A., Golecki, J. R., Fuller, R. C., and Drews, G. 1978. Visualization of the Supramolecular Architecture of Chlorosomes (Chlorobium type Vesicles) in Freeze-Fractured Cells of Chloroflexus aurantiacus. Arch. Mikrobiol. 119: 269–277.Google Scholar
  105. Stolz, J. F. 1983. Fine structure of the stratified microbiol community at Laguna Figueroa, Baja California, Mexico. I. Methods of in situ study of the laminated sediments. Precambrian Res. 20: 479–492.Google Scholar
  106. Stolz, J. F. 1984. Fine structure of the stratified microbial community at Laguna Figueroa, Baja California, Mexico: II. Transmission electron microscopy as a diagnostic tool in studying microbial communities in situ, p. 23–38. In: Cohen, Y., Castenholz, R. W. and Halvorson, H. O. (ed.), Microbial Mats: Stromatolites. New York: Alan R. Liss, Inc.Google Scholar
  107. Tayne, T. A., Cutler, J. E., and Ward, D. M. 1987. Use of Chloroflexus-Specific Antiserum to Evaluate Filamentous Bacteria of a Hot Spring Microbial Mat. Appl. Environ. Microbiol. 53: 1962–1964.PubMedPubMedCentralGoogle Scholar
  108. Trüper, H. G. 1976. Higher taxa of the phototrophic bacteria: Chloroflexaceae fam. nov., a family for the gliding, filamentous, phototrophic “green” bacteria. Internat. J. Syst. Bacteriol. 26: 74–75.Google Scholar
  109. Van Dorssen, R. J., and Amesz, J. 1988. Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus. III. Energy transfer in whole cells. Photosynth. Res. 15: 177–189.Google Scholar
  110. Vasmel, H., and Amesz, J. 1983. Photoreduction of menaquinone in the reaction center of the green photosynthetic bacterium Chloroflexus aurantiacus. Biochim. Biophys. Acta 724: 118–122.Google Scholar
  111. Vasmel, H., Amesz, J., and Hoff, A. J. 1986. Analysis by exciton theory of the optical properties of the reaction center of Chloroflexus aurantiacus. Biochim. Biophys. Acta 852: 159–168.Google Scholar
  112. Venetskaya, S. L., and Gerasimenko, L. M. 1988. Electron-microscopic study of microorganisms in a halophilic cyanobacterial community. Mikrobiologiya (Engl. transi.) 57: 377–383.Google Scholar
  113. Wagner-Huber, R., Brunisholz, R., Frank, G., and Zuber, H. 1988. The BChl%-binding polypeptides from chlorosomes of green photosynthetic bacteria. FEBS Lett. 239: 8–12.Google Scholar
  114. Ward, D. M., Beck, E., Revsbech, N. P., Sandbeck, K. A., and Winfrey, M. R. 1984. Decomposition of hot spring microbial mats, p. 191–214. In: Cohen, Y., Castenholz, R. W., and Halvorson, H. O. (ed.), Microbial Mats: Stromatolites. New York: Alan R. Liss, Inc.Google Scholar
  115. Ward, D. M., Weller, R., Shiea, J., Castenholz, R. W., and Cohen, Y. 1989. Hot Spring Microbial Mats: Anoxygenic and Oxygenic Mats of Possible Evolutionary Significance, p. 3–15. In: Cohen, Y. and Rosenberg, E. (ed.), Microbial Mats: Physiological Ecology of Benthic Microbial Communities. Washington, DC.: Amer, Soc. Microbiol.Google Scholar
  116. Wechsler, T. D., Brunisholz, R. A., Frank, G., Suter. E, and Zuber, H. 1987. The complete amino acid sequence of the antenna polypeptide B806–866-ß from the cytoplasmic membrane of the green bacterium Chloroflexus aurantiacus. FEBS Lett. 210: 189–194.Google Scholar
  117. Wechsler, T., Brunisholz, R., Suter, E, Fuller, R. C., and Zuber, H. 1985a. The complete amino acid sequence of a bacteriochlorophyll a binding polypeptide isolated from the cytoplasmic membrane of the green photosynthetic bacterium Chloroflexus aurantiacus. FEBS Lett. 191: 34–38.Google Scholar
  118. Wechsler, T., Suter, F., Fuller, R. C., and Zuber, H. 1985b. The complete amino acid sequence of the bacteriochlorophyll c binding polypeptide from chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus. FEBS Lett. 181: 173–178.Google Scholar
  119. Wittmershaus, B. R, Brune, D. C., and Blankenship, R. E. 1988. Energy Transfer in Chloroflexus aurantiacus: Effects of Temperature and Anaerobic Conditions, p. 543–554 In: Scheer, H. and Schneider, S. (ed.), Photosynthetic Light-Harvesting Systems. Berlin: Walter de Gruyter Press.Google Scholar
  120. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221–271.PubMedPubMedCentralGoogle Scholar
  121. Wynn, R. M., Redlinger, T. E., Foster, J. M., Blankenship, R. E., Fuller, R. C., Shaw, R. W., and Knaff, D. B. 1987. Electron-transport chains of phototrophically and chemotrophically grown Chloroflexus aurantiacus. Biochim. Biophys. Acta 891: 216–226.Google Scholar
  122. Zannoni, D. 1986. The branched respiratory chain of heterotrophically dark-grown Chloroflexus aurantiacus. FEBS Lett. 198: 119–124.Google Scholar
  123. Zannoni, D. 1987. The interplay between photosynthesis and respiration in facultative anoxygenic phototrophic bacteria, p. 575–583. In: Papa, S., Chance, B. and Ernster, L. (ed.), Cytochrome Systems. New York: Plenum Press.Google Scholar
  124. Zannoni, D., and Fuller, R. C. 1988. Functional and spectral characterization of the respiratory chain of Chloroflexus aurantiacus grown in the dark under oxygen-saturated conditions. Arch. Microbiol. 150: 368–373.Google Scholar
  125. Zannoni, D., and Ingledew, W. J. 1985. A thermodynamic analysis of the plasma membrane electron transport components in photoheterotrophically grown cells of Chloroflexus aurantiacus. FEBS Lett. 193: 93–98.Google Scholar
  126. Zannoni, D., and Venturoli, G. 1988. The mechanism of photosynthetic electron transport and energy transduction by membrane fragments from Chloroflexus aurantiacus, p. 135–143. In: Olson, J. M., Ormerod, J. G., Amesz, J., Stackebrandt, E. and Trüper, H. G. (ed.), Green Photosynthetic Bacteria. New York: Plenum Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Beverly K. Pierson
  • Richard W. Castenholz

There are no affiliations available

Personalised recommendations