The Prokaryotes pp 3144-3170 | Cite as

The Family Azotobacteraceae

  • Jan Hendrik Becking

Abstract

The family Azotobacteraceae is represented by two genera, Azotobacter (Beijerinck, 1901a, 1901b) and Azomonas (Winogradsky, 1938). The removal of the genera Beijerinckia and Derxia from the Azotobacteraceae was based on rRNA cistron analysis (De Smedt et al., 1980) and rRNA cistron similarities as observed in DNA-rRNA hybridization experiments (De Vos et al., 1985). Such experiments showed that Beijerinckia and Derxia are not closely related to the genera Azotobacter and Azomonas, but that they belong to other subdivisions or groups, i.e., the alpha and the beta subclasses, respectively of the Proteobacteria (see Chapter 100). On the other hand, investigations on rRNA similarities of various Gram-negative bacteria based on Two values of DNA-rRNA hybrids showed that Azotobacter and Azomonas are closely related to one another and to the Pseudomonas fluorescens rRNA branch. The latter branch or group belongs to the Superfamily I in the nomenclature of De Ley and coworkers (see Chapter 100; De Smedt et al., 1980; and De Vos et al., 1985) or the gamma group/subdivision or subclass of the purple bacteria as defined by Woese et al. (1985a, 1985b) or the Proteobacteria, as defined by Stackebrandt et al. (1988).

Keywords

Sole Source Sodium Benzoate Enrichment Medium General Microbiology MoFe Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alexander, M., and Wilson, P. W. 1956. Intracellular distribution of tricarbocylic acid cycle enzymes in Azotobacter vinelandii. Journal of Bacteriology 71: 252–253.PubMedPubMedCentralGoogle Scholar
  2. Antheunisse, J. 1972. Preservation of microorganisms. An-tonie van Leeuwenhoek Journal of Microbiology and Serology 38: 617–622.Google Scholar
  3. Antheunisse, J. 1973. Viability of lyophilized microorganisms after storage. Antonie van Leeuwenhoek Journal of Microbiology and Serology 39: 243–248.Google Scholar
  4. Azad, M. I. and Aslam, M. 1985. Studies on the effect of Azotobacter chroococcum on the yield of potato (Solanum tuberosum L.), p. 395–398. In: Malik, K. A., Naqvi, S. H. M. and Aleem, M. I. H. (ed.), Nitrogen and the environment. Proc. International Symposium. Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan.Google Scholar
  5. Bagyaraj, D. J. and Menge, J. A. 1978. Interaction between a VA mycorrhiza and Azotobacter and their effects on rhizosphere microflora and plant growth. New Phytologist 80: 567–573.Google Scholar
  6. Becking, J. H. 1961. Studies on nitrogen-fixing bacteria of the genus Beijerinckia. I. Geographical and ecological distribution in soils. Plant and Soil 14: 49–81.Google Scholar
  7. Becking, J. H. 1962. Species differences in molybdenum and vanadium requirements and combined nitrogen utilization by Azotobacteraceae. Plant and Soil 16: 171–201.Google Scholar
  8. Becking, J. H. 1971. Biological nitrogen fixation and its economic significance, p. 189–222. In: Nitrogen-15 in soil-plant studies. IAEA-PL-341/14. International Atomic Energy Agency, Vienna.Google Scholar
  9. Becking, J. H. 1981. The Family Azotobacteraceae, p. 795–817. In: M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (ed.), The prokaryotes: A handbook on habitats, isolation, and identification of bacteria, vol. 1. Springer-Verlag, Berlin.Google Scholar
  10. Beijerinck, M. W. 1901a. On oligonitrophilous bacteria. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 3: 586–595.Google Scholar
  11. Beijerinck, M. W. 190 lb. Ueber oligonitrophile Mikroben. Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten. Abt. 2, 7: 561–582.Google Scholar
  12. Bishop, R E. 1986. A second nitrogen fixation system in Azotobacter vinelandii. Trends in Biochemical Sciences (TIBS) 11: 225–227.Google Scholar
  13. Bishop, R E., and Brill, W. J. 1977. Genetic analysis of Azotobacter vinelandii mutant strains unable to fix nitrogen. Journal of Bacteriology 130: 954–956.PubMedPubMedCentralGoogle Scholar
  14. Bishop, P. E., Dazzo, F. B., Appelbaum, E. R., Maier, R. J., and Brill, W. J. 1977a. Intergeneric transfer of genes involved in the Rhizobium legume symbiosis. Science 198: 938–940.PubMedGoogle Scholar
  15. Bishop, P. E., Gordon, J. K., Shah, V. K., and Brill, W. J. 1977b. Transformation of nitrogen fixation genes in Azotobacter, p. 67–80. In: A. Hollaender (ed.), Genetic engineering for nitrogen fixation. Series Basic Life Sciences, vol. 9. Plenum Press, New York.Google Scholar
  16. Bishop, P. E., Jarlenski, D. M. L., and Hetherington, D. R. 1980. Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii. Proceeding of the National Academy of Sciences (USA) 77: 7342–7346.Google Scholar
  17. Bishop, P. E., Jarlenski, D. M. L., and Hetherington, D. R. 1982. Expression of an alternative nitrogen fixation system in Azotobacter vinealandii. Journal of Bacteriology 150: 1244–1251.PubMedPubMedCentralGoogle Scholar
  18. Bishop, P. E., Premakumar, R., Dean, D. R., Jacobson, M. R., Chisnell, J. R., Rizzo, T. M., and Kopczynski, J. 1986. Nitrogen fixation by Azotobacter vinelandii strains having deletions in structural genes for nitrogenase. Science 232: 92–94.PubMedGoogle Scholar
  19. Bortels, H. 1930. Molybdän als Katalysator bei der biologischen Stickstolïbindung. Archiv für Mikrobiologie 1: 333–342.Google Scholar
  20. Brown, M. E., Burlingham, S. K., and Jackson, R. M. 1962. Studies on Azotobacter species in soil. II. Populations of Azotobacter in the rhizosphere and effect of artificial inoculation. Plant and Soil 17: 320–332.Google Scholar
  21. Brown, M. E., Burlingham, S. K., and Jackson, R. M. 1964. Studies on Azotobacter species in soil. III. Effect of artificial inoculation on crop yields. Plant and Soil 20: 194–214.Google Scholar
  22. Buchanan, R. E., and Gibbons, N. E. (ed.). 1974. Bergey’s manual of determinative bacteriology, 8th ed. Williams & Wilkins, Baltimore.Google Scholar
  23. Bulen, W. A., Burns, R. C., and LeComte, J. R. 1964. Nitrogen fixation: cell-free system with extracts of Azotobacter. Biochemical and Biophysical Research Communication 17: 265–271.Google Scholar
  24. Bulen, W. A., and LeComte, J. R. 1966. The nitrogenase system from Azotobacter: two enzyme requirement for NZ reduction. ATP dependent H, evolution, and ATP hydrolysis. Proceedings of the National Academy of Sciences (USA) 56: 979–986.Google Scholar
  25. Burk, D. 1930. The influence of oxygen gas upon the organic catalysis of nitrogen fixation by Azotobacter. Journal Physical Chemistry 34: 1195–1209.Google Scholar
  26. Burns, R. C., Holsten, R. D., and Hardy, R. W. F. 1970. Isolation and crystallization of the MoFe protein of Azotobacter nitrogenase. Biochemical and Biophysical Research Communications 39: 90–99.PubMedGoogle Scholar
  27. Cannon, E C., and Postgate, J. R. 1976. Expression of Klebsiella nitrogen fixation genes (ni0) in Azotobacter. Nature (London) 260: 271–272.Google Scholar
  28. Chuml, V. A., Thompson, B. J., Smiley, B. L., and Warner, R. C. 1980. Properties of Azotobacter phage PAV-1 and its DNA. Virology 102: 262–266.PubMedGoogle Scholar
  29. Claus, D., and Hempel, W. 1970. Specific substrates for isolation and differentiation of Azotobacter vinelandii. Archiv für Mikrobiologie 73: 90–96.PubMedGoogle Scholar
  30. Dahlen, J. V., Parejko, R. A., and Wilson, P. W. 1969. Complementary functioning of two components from nitrogen-fixing bacteria. Journal of Bacteriology 98: 325–326.PubMedPubMedCentralGoogle Scholar
  31. Dalton, H., and Postgate, J. R. 1969a. Effect of oxygen on growth of Azotobacter chroococcum in batch and continuous cultures. Journal of General Microbiology 54: 463–473.Google Scholar
  32. Dalton, H., and Postgate, J. R. 1969b. Growth and physiology of Azotobacter chroococcum in continuous culture. Journal of General Microbiology 56: 307–319.PubMedGoogle Scholar
  33. De la Rubia, T., Gonzalez-Lopez, J., Moreno, J., Martinez-Toledo, M. V., and Ramos-Cormenzana, A. 1989. Isolation and characterization of Azotobacter species from roots of Sorghum bicolor. Microbios 57: 113–119.Google Scholar
  34. Derx, H. G. 195la. Azotobacter insigne spec. nov. fixateur d’azote à flagellation polaire. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. Series C 54: 342–350.Google Scholar
  35. Derx, H. G. 195 lb. L’accumulation spécifique de l’Azotobacter agile Beijerinck et de l’Azotobacter vinelandii Lipman. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series C 54: 624–634.Google Scholar
  36. De Smedt, J., Bauwens, M., Tytgat, R., and De Ley, J. 1980. Intra-and intergeneric similaritis of ribosomal ribonucleic acid cistrons of free-living, nitrogen-fixing bacteria. International Journal Systematic Bacteriology 30: 106–122.Google Scholar
  37. Detroy, R. W., Witz, D. E, Parejko, R. A., and Wilson, P. W. 1968. Reduction of N2 by complementary functioning of two components from nitrogen fixing bacteria. Proceedings of the National Academy of Sciences (USA) 61: 537–541.Google Scholar
  38. De Vos, P., Goor, M., Gillis, M., and De Ley, J. 1985. Ribosomal ribonucleic acid cistron similarities of phytopathogenic Pseudomonas species. International Journal of Systematic Bacteriology 35: 169–184.Google Scholar
  39. Dilworth, M. J., Eady, R. R., and Eldridge, M. E. 1988. The vanadium nitrogenase of Azotobacter chroococcum. Reduction of acetylene and ethylene to ethane. Biochemical Journal 249: 745–751.PubMedPubMedCentralGoogle Scholar
  40. Dilworth, M. J., and Parker, C. A. 1961. Oxygen inhibition of respiration in Azotobacter. Nature (London) 191: 520–521.Google Scholar
  41. Döbereiner, J. 1966. Azotobacter paspali sp. n., uma bactéria fixadora de nitrogênio na rizosfera de Paspalum. Presquisa Agropecuària Brasileira 1: 357–365.Google Scholar
  42. Döbereiner, J. 1968. Non-symbiotic nitrogen fixation in tropical soils. Presquisa Agropecuària Brasileira 3: 1–6.Google Scholar
  43. Döbereiner, J. 1970. Further research on Azotobacter pas-pali and its variety specific occurrence in the rhizosphere of Paspalum notatum Flugge. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 2, 124: 224–230.Google Scholar
  44. Döbereiner, J., and Day, J. M. 1976. Associative symbiosis in tropical grasses: Characterization of microorganisms and dinitrogen-fixing sites, p. 518–538. In: Newton, E., and Nijman, C. J. (ed.), Proceedings of the First International Symposium on Nitrogen Fixation, vol. 2. Pullman, Washington.Google Scholar
  45. Drozd, J., and Postgate, J. R. 1970. Interference by oxygen in the acetylene-reduction test for aerobic nitrogen-fixing bacteria. Journal of General Microbiology 60: 427–429.Google Scholar
  46. Drozd, J. W., Tubb, R. S., and Postgate, J. R. 1972. A chemostat study of the effect of fixed nitrogen sources on nitrogen fixation, membranes and free amino acids in Azotobacter chroococcum. Journal of General Microbiology 73: 221–232.PubMedGoogle Scholar
  47. Duff, J. T., and Wyss, O. 1961. Isolation and characterization of a new series of Azotobacter bacteriophages. Journal of General Microbiology 24: 273–289.PubMedGoogle Scholar
  48. Eady, R. R., Richardson, T. H., Miller, R. W., Hawkins, M., and Lowe, D. J. 1988. The vanadium nitrogenase of Azotobacter chroococcum. Biochemical Journal 256: 189–196.PubMedPubMedCentralGoogle Scholar
  49. Eady, R. R., Robson, R. L., Richardson, T. H., Miller, R. W., and Hawkins, M. 1987. The vanadium nitrogenase of Azotobacter chroococcum. Purification and properties of the VFe protein. Biochemical Journal 244: 197–207.PubMedPubMedCentralGoogle Scholar
  50. Elmerich, C. 1984. Azotobacter and Azospirillum genetics and molecular biology, p. 315–346. In: N. S. Subba Rao (ed.), Current developments in biological nitrogen fixation. Edward Arnold, London.Google Scholar
  51. Emam, N. E, Fayez, M., and Makboul, H. E. 1986. Wheat growth as affected by inoculation with Azotobacter isolated from different soils. Zentralblatt für Mikrobiologie 141: 17–23.Google Scholar
  52. Evans, D., Jones, R., Woodley, P., Kennedy, C., and Robson, R. 1985. Nif gene organization in Azotobacter chroococcum, p. 506. In: Evans, H. J., Bottomley, P. J., and Newton, W. E. (ed.), Nitrogen fixation research progress. Nijhoff, Dordrecht/Boston.Google Scholar
  53. Fisher, R., and Brill, W. J. 1969. Mutant of Azotobacter vinelandii unable to fix nitrogen. Biochimica et Biophysica Acta 184: 99–105.PubMedGoogle Scholar
  54. Ghonsikar, C. P., Raut, R. S., and Rudraksha, G. B. 1986. Response of sorghum and pearl millet genotypes to Azospirillum and Azotobacter inoculations, p. 53–54. In: Proceedings of the Working Group Meeting: Cereal nitrogen fixation. ICRISAT, Patancheru, A. P., India.Google Scholar
  55. Gordon, J. K., and Brill, W. J. 1972. Mutants that produce nitrogenase in the presence of ammonia. Proceedings of the National Academy of Sciences (USA) 69: 35013503.Google Scholar
  56. Guerrero, M. G., Vega, J. M., Leadbetter, E., and Losada, M. 1973. Preparation and characterization of a soluble nitrate reductase from Azotobacter chroococcum. Archiv für Mikrobiologie 91: 287–304.PubMedGoogle Scholar
  57. Haddock, B. A., and Jones, C. W. 1977. Bacterial respiration. Bacteriological Reviews 41: 47–99.PubMedPubMedCentralGoogle Scholar
  58. Hausinger, R. P., and Howard, J. B. 1980. Comparison of the iron proteins from the nitrogen fixation complexes of Azotobacter vinelandii. Clostridium pasteurianum, and Klebsiella pneumoniae. Proceedings of the National Academy of Science (USA) 77: 3826–3830.Google Scholar
  59. Hennequin, J. R., and Blachère, H. 1966. Recherches sur la synthèse de phytohormones et de composés phénoliques par Azotobacter et des bactéries de la rhizosphère. Annales de l’Institut Pasteur 111 (suppl.): 89–102.Google Scholar
  60. Hussain, A., Hussain, A, Iftikhar, M. Q. and Ahmad, S. 1985. Azotobacter on wheat growth p. 389–394 In: Malik, K. A., Naqvi, S. H. M., and Aleem, M. I. H. (ed.), Nitrogen and the Environment. Proc. International Symposium Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan.Google Scholar
  61. Jackson, R. M., Brown, M. E., and Burlingham, S.K. 1964. Similar effects on tomato plants of Azotobacter inoculation and application of gibberellins. Nature (London) 203: 851–852.Google Scholar
  62. Jensen, H. L. 1955. Azotobacter macrocytogenes n. sp., a nitrogen-fixing bacterium resistant to acid reaction. Acta Agriculturae Scandinavica 5: 278–293.Google Scholar
  63. Jensen, H. L. 1965. Non-symbiotic nitrogen fixation, p. 436–480. In: Bartholomew, W. V. and Clark, F. E. (ed.), Soil nitrogen, Monograph 10. American Society of Agronomy, Madison, Wisconsin.Google Scholar
  64. Jensen, V. 1955. The Azotobacter-flora of some Danish water courses. Botanisk Tidsskrift 52: 143–157.Google Scholar
  65. Jensen, V. 1961. Rhamnose for detection and isolation of Azotobacter vinelandii Lipman. Nature (London) 190: 832–833.Google Scholar
  66. Jensen, V., and Petersen, E. J. 1954. Studies on the occurrence of Azotobacter in Danish forest soils, p. 95–110. In: Royal Veterinary and Agricultural College Yearbook 1954. Kandrup & Wunsch, Copenhagen.Google Scholar
  67. Jensen, V., and Petersen, E. J. 1955. Taxonomic studies on Azotobacter chroococcum Beij. and Azotobacter beijerinckii Lipman, p. 107–126. In: Royal Veterinary and Agricultural College Yearbook 1955. Kandrup & Wunsch, Copenhagen.Google Scholar
  68. Johnstone, D. B. 1955. Azotobacter fluorescence. Journal of Bacteriology 69: 481–482.Google Scholar
  69. Johnstone, D. B. 1957a. Isolation of Azotobacter agile from strawboard waste water. Ecology 38: 156.Google Scholar
  70. Johnstone, D. B. 1957b. The use of a fluorimeter in the characterization of fluorescing substances elaborated by Azotobacter. Applied Microbiology 5: 103–106.PubMedPubMedCentralGoogle Scholar
  71. Johnstone, D. B. 1974. Genus I. Azotobacter Beijerink 1901, 567; Genus II. Azomonas Winogradsky 1938, 391, p. 254–256. In: Buchanan, R. E., and Gibbons, N. E. (ed.), Bergey’s manual of determinative bacteriology, 8th ed. Baltimore, Williams & Wilkins.Google Scholar
  72. Johnstone, D. B., and Fishbein, J. R. 1956. Identification of Azotobacter species by fluorescence and cell analysis. Journal of General Microbiology 14: 330–335.PubMedGoogle Scholar
  73. Joi, M. B., and Shinde, R. A. 1976. Response of onion crop to Azotobacterization. Journal of Maharashtra Agricultural Universities 1: 161–162.Google Scholar
  74. Jones, R., Woodley, P., and Robson, R. 1984. Cloning and organization of some genes for nitrogen fixation from Azotobacter chroococcum and their expression in Klebsiella pneumoniae. Molecular General Genetics 197: 318–327.PubMedGoogle Scholar
  75. Karlsson, J. L., and Barker, H. A. 1948. Induced biochemical mutants of Azotobacter agilis. Journal of Bacteriology 56: 671–677.PubMedCentralGoogle Scholar
  76. Kavimandan, S. K., Lakshmi Kumari, M., and Subba Rao, N. S. 1978. Non-symbiotic nitrogen fixing bacteria in the rhizosphere of wheat, maize and sorghum. Proceedings of the Indian Academy of Sciences 878: 299–302.Google Scholar
  77. Kelly, M. 1969. Some properties of purified nitrogenase of Azotobacter chroococcum. Biochemica et Biophysica Acta 171: 9–22.Google Scholar
  78. Kennedy, C. 1989. The genetics of nitrogen fixation, p. 107–126. In: Hopwood, D. A. and Chater, K. F. (ed.), Genetics of bacterial diversity. Academic Press, New York.Google Scholar
  79. Kennedy, C., and Robson, R. 1983. Activation of nif gene expression in Azotobacter vinelandii and Azotobacter chroococcum by the nifA gene of Klebsiella pneumoniae. Nature (London) 301: 626–628.Google Scholar
  80. Kennedy, C., and Toukdarian, A. 1987. Genetics of Azotabacters: Applications to nitrogen fixation and related aspects of metabolism. Annual Review of Microbiology 41: 227–258.PubMedGoogle Scholar
  81. Kirakosyan, A. V., and Melkonyan, Zh. S. 1964. New Azotobacter agile varieties from the soils of ARMSSR. ( R). Doklady Akademic Nauk Armyanskoj S.S.R. 17: 33–42.Google Scholar
  82. Kloepper, J. W., Lifshitz, R., and Zablotowicz, R. M. 1989. Free-living bacterial inocula for enhancing crop production, p. 39–44. In: Trends in biotechnology, vol. 7. Elsevier Publications, Amsterdam.Google Scholar
  83. Kluyver, A. J., and van den Bout, M. T. 1936. Notiz über Azotobacter agilis Beijerinck. Archiv für Mikrobiologie 7: 261–263.Google Scholar
  84. Kluyver, A. J., and van Reenen, W. J. 1933. Über Azotobacter agilis Beijerinck. Archiv für Mikrobiologie 4: 280–301.Google Scholar
  85. Konde, B. K., and Shinde, P. A. 1986. Effect of Azotobacter chroococcum and Azospirillum brasilense inoculations and nitrogen on yields of sorghum, maize, pearl millet, and wheat, p. 85–90. In: Proceedings of Working Group Meeting: Cereal nitrogen fixation. ICRISAT, Patancheru, A. P., India.Google Scholar
  86. Krasil’nikov, N. A. 1949. Guide to the bacteria and actinomycetes. Akademii Nauk SSSR, Moscow.Google Scholar
  87. Kuhla, J., and Oelze, J. 1988. Dependence of nitrogenase switch-off upon oxygen stress on the nitrogenase activity in Azotobacter vinelandii. Journal of Bacteriology 170: 5325–5329.PubMedPubMedCentralGoogle Scholar
  88. Lakshmi Kumari, M., Vijayalakshmi, K., and Subba Rao, N. S. 1975. Interaction between Azotobacter sp. and fungi. In vitro studies with Fusarium moniliforme Sheld. Phytopathologisch Zeitschrift 75: 27–30.Google Scholar
  89. Lapage, S. P., Sneath, P. H. A., Lessel, E. F., Skerman, V. B. D., Seeliger, H. R R., and Clark, W. A., (ed.). International Code of Nomenclature of Bacteria, 1976 revision. American Society for Microbiology, Washington, D.C.Google Scholar
  90. Leach, C. K., and Battikhi, M. 1978. Isolation of auxotrophs from duplex-forming strains of Azotobacter vinelandii. Proceedings Society General Microbiology 5: 110Google Scholar
  91. Lees, H., and Postgate, J. R. 1973. The behavior of Azotobacter chroococcum in oxygen-and phosphate-lim-ited chemostat culture. Journal of General Microbiology 75: 161–166.PubMedGoogle Scholar
  92. Lehri, L. K., and Mehrotra, C. L. 1968. Use of bacterial fertilizers in crop production in UP. Current Science ( India, Bangalore ) 37: 494–495.Google Scholar
  93. Lehri, L. K., and Mehrotra, C. L. 1972. Effect of Azotobacter inoculation on the yield of vegetable crops. Indian Journal of Agricultural Research 9: 201–204.Google Scholar
  94. Lipman, J. G. 1903a. Nitrogen-fixing bacteria. Ph.D. thesis. Cornell University, Ithaca, New York, June 1903. New Jersey State Agricultural Experiment Station, 16th Annual Report. State Printers, New Jersey.Google Scholar
  95. Lipman, J. G. 1903b. Experiments on the transformation and fixation of nitrogen by bacteria. New Jersey State Agricultural Experiment Station, 17th Annual Report 24: 215–285.Google Scholar
  96. Lipman, J. G. 1905. Soil bacteriological studies, p. 237–289. In: New Jersey State Agricultural Experiment Station, Seventeenth Annual Report over 1904. State Printers, New Jersey.Google Scholar
  97. Maier, R. J., Bishop, P. E., and Brill, W. J. 1978. Transfer from Rhizobium japonicum to Azotobacter vinelandii of genes required for nodulation. Journal of Bacteriology 134: 1199–1201.PubMedPubMedCentralGoogle Scholar
  98. Maier, R. J., and Prosser, J. 1988. Hydrogen-mediated man-nose uptake in Axotobacter vinelandii. Journal of Bacteriology 170: 1986–1989.PubMedPubMedCentralGoogle Scholar
  99. Marr, A. G., and Marcus, L. 1962. Kinetics of induction of mannitol dehydrogenase in Azotobacter agilis. Biochimica et Biophysica Acta 64: 65–82.Google Scholar
  100. Martinez-Toledo, M. V., Gonzalez-Lopez, J., de la Rubia, T., Moreno, J., and Ramos-Cormenzana, A. 1988a. Effect of inoculation with Azotobacter chroococcum on nitrogenase activity of Zea mays roots grown in agricultural soils under aseptic and non-sterile conditions. Biology and Fertility of Soils 6: 170–173.Google Scholar
  101. Martinez-Toledo, M. V., Gonzalez-Lopez, J., de la Rubia, T., Moreno, J., and Ramos-Cormenzana, A. 1988b. Grain yield response of Zea mays (hybrid AE 703) to Azotobacter chroococcum H 23. Biology and Fertility of Soils 6: 352–353.Google Scholar
  102. Mehrotra, C. L., and Lehri, C. K. 1971. Effect of Azotobacter inoculation on crop yields. Journal Indian Society of Soil Science 19: 243–248.Google Scholar
  103. Meshram, S. U. and Jager, G. 1983. Antagonism of Azotobacter chroococcum isolates to Rhizoctonia solani. Netherlands Journal of Plant Pathology 89: 191–197.Google Scholar
  104. Meyerhoff, O., and Burk, D. 1928. Über die Fixation des Luftstickstoffs durch Azotobacter. Zeitschrift physikalische Chemie (Abt.A) 139: 117–142.Google Scholar
  105. Miller, R. W., and Eady, R. R. 1988. Molybdenum and vanadium nitrogenases of Azotobacter chroococcum. Low temperature favors nitrogen reduction by vanadium nitrogenase. Biochemical Journal 256: 429–432.Google Scholar
  106. Mishustin, E. N., and Shilnikova, V. K. 1969. Free-living nitrogen-fixing bacteria of the genus Azotobacter, p. 72124. In: Soil biology: Reviews of research. UNESCO Publications.Google Scholar
  107. Mishustin, E. N., and Shilnikova, V. K. 1971. Biological fix- ation of atmospheric nitrogen. MacMillan, London.Google Scholar
  108. Monib, M., Abd-El-Malek, Y., Hosny, I. and Fayez, M. 1979. Seed inoculation with Azotobacter chroococcum in sand cultures and its effect on nitrogen balance. Zentralblatt fir Mikrobiologie 134: 243–248.Google Scholar
  109. Monib, M., Hosny, I., and Besada, Y. B. 1984. Seed inoculation of castor oil plant (Ricinus communist and its effect on nutrient uptake, sp. 723–732. In: Szegi, J (ed.), Soil biology and conservation of the biosphere, vol. 2. Akademiai Kiado, Budapest.Google Scholar
  110. Monsour, V., Wyss, O., and Kellog, D. S., Jr. 1955. A bacteriophage for Azotobacter. Journal of Bacteriology 70: 486–487.PubMedPubMedCentralGoogle Scholar
  111. Norris, J. R., and Kingham, W. H. 1968. The classification of azotobacters, p. 95–105. In: Festskrift til Hans Laurits Jensen. Statens Planteavls-Laboratorium, Lyngby, Denmark.Google Scholar
  112. Oppenheim, J., Fisher, R. J., Wilson, P. W., and Marcus, L. 1970b. Properties of a soluble nitrogenase in Azotobacter. Journal of Bacteriology 101: 292–296.PubMedPubMedCentralGoogle Scholar
  113. Oppenheim, J., and Marcus, L. 1970a. Correlation of ultrastructure in Azotobacter vinelandii with nitrogen source of growth. Journal of Bacteriology 101: 286–291.PubMedPubMedCentralGoogle Scholar
  114. Page, W. J. 1977. Transformation of Azotobacter vinelandii strains unable to fix nitrogen with Rhizobium spp. DNA. Canadian Journal of Microbiology 24: 209–214.Google Scholar
  115. Page, W. J., and Sadoff, H. L. 1976. Physiological factors affecting transformation of Azotobacter vinelandii. Journal of Bacteriology 125: 1080–1087.PubMedPubMedCentralGoogle Scholar
  116. Pandey, R. K., Bahl, R. K., and Rao, P. R. T. 1986. Growth stimulating effects of nitrogen fixing bacteria (biofertiliser) on oak seedlings. The Indian Forester, Dehra Dun, 112: 75–79.Google Scholar
  117. Parker, C. A., and Scutt, R B. 1958. Competitive inhibition of nitrogen fixation by oxygen. Biochemica et Biophysica Acta 29: 662.Google Scholar
  118. Parker, C. A., and Scutt, P. B. 1960. The effect of oxygen on nitrogen fixation by Azotobacter. Biochimica et Biophysica Acta 38: 230–238.PubMedGoogle Scholar
  119. Pau, R. N. 1989. Nitrogenases without molybdenum. Trends in Biochemical Science (TIBS) 14: 183–186.Google Scholar
  120. Pau, R. N., Mitchenall, L. A., and Robson, R. L. 1989. Genetic evidence for an Azotobacter vinelandii nitrogenase lacking molybdenum and vanadium. Journal of Bacteriology 171: 124–129.PubMedPubMedCentralGoogle Scholar
  121. Prasad, N. N. 1986. Effect of certain organic amendments and potassium on the bacterization of rice with Azotobacter chroococcum, p. 107–109. In: Proceedings of the Working Group Meeting: Cereal nitrogen fixation. ICRISAT, Patancheru, A. R, India.Google Scholar
  122. Prosser, J., Graham, L., and Maier, R. J. 1988. Hydrogen-mediated enhancement of hydrogenase expression in Azotobacter vinelandii. Journal of Bacteriology 170: 1990–1993.PubMedPubMedCentralGoogle Scholar
  123. Rai, S. N., and Gaur, A. C. 1988. Characterization of Azotobacter spp. and effect of Azotobacter and Azospirillum as inoculant on the yield and N-uptake of wheat crop. Plant and Soil 109: 131–134.Google Scholar
  124. Raina, R., Reddy, M. A., Ghosal, D., and Das, H. K. 1988. Characterization of the gene for the iron-protein of the vanadium dependent alternative nitrogenase of Azotobacter vinelandii and construction of a Tn5 mutant. Molecular and General Genetics 214: 121–127.PubMedGoogle Scholar
  125. Repaske, R. 1954. Succinic dehydrogenase of Azotobacter vinelandii. Journal of Bacteriology 68: 555–561.PubMedPubMedCentralGoogle Scholar
  126. Repaske, R., and Wilson, P. W. 1953. Oxidation of intermediates of the tricarbocylic acid cycle by extracts of Azotobacter agile. Proceedings of the National Academy of Sciences (USA) 39: 225–232.Google Scholar
  127. Reuszer, H. W. 1939. The effect of benzoic acid compounds upon the abundance of microorganisms, including Azotobacter organisms, in a soil. Proceedings of the Third Commission of the International Society of Soil Science A: 151–160.Google Scholar
  128. Robson, R. L. 1979. 02-repression of nitrogenase synthesis in Azotobacter chroococcum. FEMS Microbiology Letters 5: 259–262.Google Scholar
  129. Robson, R. L., and Postgate, J. R. 1980. Oxygen and hydrogen in biological nitrogen fixation. Annual Review of Microbiology 34: 183–207.PubMedGoogle Scholar
  130. Robson, R. L., Woodley, P. R., Pau, R. N., and Eady, R. R. 1989. Structural genes for the vanadium nitrogenase from Azotobacter chroococcum. The EMBO Journal 8: 1217–1224.PubMedPubMedCentralGoogle Scholar
  131. Rovira, A. D. 1963. Microbial inoculation of plants. I. Establishment of free-living nitrogen-fixing bacteria in the rhizosphere and their effects on maize, tomato and wheat. Plant and Soil 19: 304–314.Google Scholar
  132. Rubenchik, L. I. 1959. A contribution to the systematics of bacteria of the Azotobacteriaceae family. Microbiology (English edition) 28:309–315 (translated from Mikrobiologiya 28: 328–355 ).Google Scholar
  133. Ruinen, J. 1961. The phyllosphere. I. An ecologically neglected milieu. Plant and Soil 15: 81–109.Google Scholar
  134. Sadoff, H. L., Shimei, B., and Ellis, S. 1979. Characterization of Azotobacter vinelandii deoxyribonucleic acid and folded chromosomes. Journal of Bacteriology 138: 871–877.PubMedPubMedCentralGoogle Scholar
  135. Santero, E., Toukdarian, A., Humphrey, R., and Kennedy, C. 1988. Identification and characterization of two nitrogen fixation regulatory regions, nifA and nfrX, in Azotobacter vinelandii and Azotobacter chroococcum. Molecular Microbiology 2: 303–314.Google Scholar
  136. Scherings, G., Haaker, H., Wassink, H., and Veeger, C. 1983. On the formation of an oxygen-tolerant three component nitrogenase complex from Azotobacter vinelandii. European Journal of Biochemistry 135: 591–599.PubMedGoogle Scholar
  137. Schubert, K. R., Engelke, J. A., Russell, S. A., and Evans, H. J. 1977. Hydrogen reactions of nodulated leguminous plants. I. Effect of rhizobial strain and plant age. Plant Physiology 60: 651–654.Google Scholar
  138. Schubert, K. R., and Evans, H. J. 1976. Hydrogen evolution: A major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proceedings of the National Academy of Sciences (USA) 73: 1207–1211.Google Scholar
  139. Sen, M., Pal, T. K., and Sen. S. P. 1969. Intergeneric transformations between Rhizobium and Azotobacter. An-tonie van Leeuwenhoek Journal of Microbiology and Serology 35: 533–540.Google Scholar
  140. Sen, M., and Sen, S. P. 1965. Interspecific transformation in Azotobacter. Journal of General Microbiology 41: 16.Google Scholar
  141. Shah, V. K., and Brill, W. J. 1973. Nitrogenase IV. Simple method of purification to homogeneity of nitrogenase components from Azotobacter vinelandii. Biochimica et Biophysica Acta 305: 445–454.PubMedGoogle Scholar
  142. Shah, V. K., and Brill, W. J. 1977. Isolation of an iron-molybdenum cofactor from nitrogenase. Proceedings of the National Academy of Sciences (USA) 74: 3249–3253Google Scholar
  143. Shah, V. K., Davis, L. C., Gordon, J. K., Orme-Johnson, W. H., and Brill, W. J. 1973. Nitrogenase III. Nitrogenaseless mutants of Azotobacter vinelandii: Activities.Google Scholar
  144. Shah, V. K., Davis, L. C., Gordon, J. K., Orme-Johnson, W. H., and Brill, W. J. 1973. cross-reactions and EPR spectra. Biochimica et Biophysica Acta 292:246–255.Google Scholar
  145. Shende, S. T., Apte, R. G., and Singh, T. 1977. Influence of Azotobacter on germination of rice and cotton seeds. Current Science ( India, Bangalore ) 46: 675.Google Scholar
  146. Shende, S. T., Rudraksha, G. B., Apte, R., and Raut, R. S. 1986. Azotobacter inoculation: nitrogen economy and response of sorghum CSH 1, p. 75–76. In: Proceedings of the Working Group Meeting: Cereal nitrogen fixation, ICRISAT, Patancheru, A. P., India.Google Scholar
  147. Shutter, J., and Wilson, P. W. 1955. Patterns of enzymic adaptation in species of the genus Azotobacter. Journal of General Microbiology 12: 446–454.Google Scholar
  148. Smit, J. 1954. Preliminary note on a new variety of Azotobacter agile. Journal of General Microbiology 11: 511.Google Scholar
  149. Smith, B. E. 1989. Lecture: New and old nitrogenases. Societé de Physiologie Végétale, October 1989. Fribourg, Switzerland.Google Scholar
  150. Smith, B. E., Eady, R. E., Lowe, D. J., and Gormal, C. 1988. The vanadium-iron protein of vanadium nitrogenase from Azotobacter chroococcum contains an iron-vanadium cofactor. Biochemical Journal 250: 299–302.PubMedPubMedCentralGoogle Scholar
  151. Socolofsky, M. D., and Wyss, O. 1961. Cysts of Azotobacter. Journal of Bacteriology 81: 946–954.PubMedPubMedCentralGoogle Scholar
  152. Sorger, G. J. 1968. Regulation of nitrogen fixation in Azotobacter vinelandii OP and an apparently partially constitutive mutant. Journal of Bacteriology 95: 1721–1726.PubMedPubMedCentralGoogle Scholar
  153. Spencer, D., Takahashi, H., and Nason, A. 1957. Relationship of nitrate and hydroxylamine reductases to nitrate assimilation and nitrogen fixation in Azotobacter agile. Journal of Bacteriology 73: 553–562.PubMedPubMedCentralGoogle Scholar
  154. Stackebrandt, E., Murray, R. G. E., and Trüper, H. G. 1988. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.” International Journal Systematic Bacteriology 38: 321–325.Google Scholar
  155. Stone, R. W., and Wilson, P. W. 1952a. The incorporation of acetate in acids of the citric acid cycle by Azotobacter extracts. The Journal of Biological Chemistry 196: 221–225.PubMedGoogle Scholar
  156. Stone, R. W., and Wilson, P. W. 1952b. The effect of oxalacetate on the oxidation of succinate by Azotobacter extracts. Journal of Bacteriology 63: 619–622.PubMedPubMedCentralGoogle Scholar
  157. Subbian, R, and Chamy, A. 1984. Effect of Azotobacter and Azospirillum on the growth and yield of sesame (Sesamum indicum). Madras Agricultural Journal 71: 615–617.Google Scholar
  158. Sundara Rao, W. V. B., Mann, H. S., Pal, N. B., and Mathur, R. S. 1963. Bacterial inoculation experiments with special reference to Azotobacter. Indian Journal Agricultural Science 33: 279–290.Google Scholar
  159. Swisher, R. H., Landt, M. L., and Reithel, E J. 1977. The molecular weight of, and evidence for two types of subunits in the molybdenum-iron-protein of Azotobacter vinelandii nitrogenase. Biochemical Journal 163: 427432.Google Scholar
  160. Taniguchi, S., and Ohmachi, K. 1960. Particulate nitrate reductase of Azotobacter vinelandii. Journal of Biochemistry 48: 50–62.Google Scholar
  161. Tchan, Y. T. 1953. Studies of N-fixing bacteria. III. Azotobacter beijerinckii (Lipman, 1903), var. acido-tolerans (Tchan, 1952). Proceedings of the Linnean Society of New South Wales 78: 83–84.Google Scholar
  162. Tchan, Y. T., Birch-Anderson, A., and Jensen, H. L. 1962. The ultrastructure of vegetative cells and cysts of Azotobacter chroococcum. Archiv für Mikrobiologie 43: 50–66.PubMedGoogle Scholar
  163. Tchan, Y. T., and New, P. B. 1984. Azotobacteraceae, p. 219–225. In: N. Krieg and J. G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 1. Williams & Wilkins, Baltimore.Google Scholar
  164. Tchan, Y. T., Wyszomirska-Dreher, Z., New, R B., and Zhou, J-C. 1983. Taxonomy of the Azotobacteraceae determined by using immuno-electrophoresis. International Journal of Systematic Bacteriology 33: 147–156.Google Scholar
  165. Terzaghi, B. E. 1980a. Ultraviolet sensitivity and mutagenesis of Azotobacter. Journal of General Microbiology 118: 271–273.Google Scholar
  166. Terzaghi, B. E. 1980b. A method for the isolation of Azotobacter mutants derepressed for Nif. Journal of General Microbiology 118: 275–278.Google Scholar
  167. Thompson, J. R, and Skerman, V. B. D. 1979. Azotobacteraceae: The taxonomy and ecology of the aerobic nitrogen-fixing bacteria. Academic Press, London.Google Scholar
  168. Thompson, J. P. and Skerman, V. B. D. 1981. Azorhizophilus, new genus; Azorhizophilus paspali, new combination; Azotobacter armeniacus, new species, p. 215. In: Validation of the publication of new names and new combinations previously effectively published outside the IJSB. International Journal of Systematic Bacteriology 31: 215–218.Google Scholar
  169. Tiwari, V. N., Lehri, L. K., and Pathak, A. N. 1989. Effect of bacterization in barley Hordeum vulgare. Indian Journal of Agricultural Science 59: 19–20.Google Scholar
  170. Tschapek, M., and Giambiagi, N. 1955. Nitrogen fixation of Azotobacter in soil-its inhibition by oxygen. Archiv für Mikrobiologie 21: 376–390.PubMedGoogle Scholar
  171. Vancura, V., and Macura, J. 1959. The development of Azotobacter in the oat rhizosphere and its effect on yield. Folia Microbiologica 4: 200–202.Google Scholar
  172. Vancura, V., and Macura, J. 1961. The effect of root excretion on Azotobacter. Folia Microbiologica 6: 250–259.Google Scholar
  173. Vega, J. M., Guerrero, M. G. Leadbetter, E., and Losada, M. 1973. Reduced nicotinamide-adenine dinucleotidenitrate reductase from Azotobacter chroococcum. Biochemical Journal 133: 701–708.PubMedPubMedCentralGoogle Scholar
  174. Williams, A. M., and Wilson, P. W. 1954. Equilibration of succinate solutions with adapted and unadapted Azotobacter cells. Canadian Journal of Microbiology 1: 36–44.PubMedGoogle Scholar
  175. Wilson, P. W., and Knight, S. G. 1947. Experiments in bacterial physiology. Burgess, Minneapolis, MN.Google Scholar
  176. Wilson, T. G. G., and Wilson, R. W. 1955. The terminal oxidation system of Azotobacter vinelandii. Journal of Bacteriology 70: 30–34.PubMedPubMedCentralGoogle Scholar
  177. Winogradsky, S. 1932. Études sur la microbiologie du sol. 5e mémoire. Analyse microbiologique du sol, principes d’une nouvelle méthode. Annales de l’Institut Pasteur 48: 89–143.Google Scholar
  178. Winogradsky, S. 1938. Études sur la microbiologie du sol et des eaux. IX. Sur la morphologie et l’oecologie des Azotobacter. Annales de l’Institut Pasteur 60:351–400, Plate nos. V, VI, and V II.Google Scholar
  179. Woese, C. R., Weisburg, W. G., Hahn, C. M., Paster, B. J., Zablen, L. B., Lewis, B. J., Macke, T. J., Ludwig, W., and Stackebrandt, E. 1985a. The phylogeny of purple bacteria: The Gamma subdivision. Systematic Applied Microbiology 6: 25–33.Google Scholar
  180. Woese, C. R., Stackebrandt, E., Macke, T. J., and Fox, G. E. 1985b. A phylogenetic definition of the major Eubacterial taxa. Systematic Applied Microbiology 6: 143–151.PubMedGoogle Scholar
  181. Wong, T. Y., and Maier, R. J. 1985. HZ dependent mixotrophic growth of N2-fixing Azotobacter vinelandii. Journal of Bacteriology 163: 528–533.PubMedPubMedCentralGoogle Scholar
  182. Wyss, O., and Nimeck, M. W. 1962. Interspecific transduc- tion in Azotobacter. Federation Proceedings 21: 348.Google Scholar
  183. Wyss, O., and Wyss, M. B. 1950. Mutants of Azotobacter that do not fix nitrogen. Journal of Bacteriology 59: 287–291.PubMedPubMedCentralGoogle Scholar
  184. Yahalom, E., Kapulnik, Y., and Okon, Y. 1984. Response of Setaria italica to inoculation with Azospirillum brasilense as compared to Azotobacter chroococcum. Plant and Soil 82: 77–85.Google Scholar
  185. Yates, M. G. 1970. Control of respiration and nitrogen fixation by oxygen and adenine nucleotides in NZ grown Azotobacter chroococcum. Journal of General Microbiology 60: 393–401.PubMedGoogle Scholar
  186. Yates, M. G. 1988. The role of oxygen and hydrogen in nitrogen fixation, p. 383–416. In: J. A. Cole and S. Ferguson (ed.), The nitrogen and sulphur cycles. Cambridge University Press, Cambridge.Google Scholar
  187. Yates, M. G., and Campbell, F. O. 1989. The effect of nutrient limitation on the competition between an Hz uptake hydrogenase positive (Hup*) recombinant strain of Azotobacter chroococcum and the Hup-mutant parent in mixed populations. Journal of General Microbiology 135: 221–226.Google Scholar
  188. Yates, M. G., Ford, C. M., Tibelius, K. H., Campbell, E, Arp, D. J., and Seefeldt, L. C. 1988. Aspects of the physiology and genetics of the H2-uptake hydrogenase of Azotobacter chroococcum. p. 263–299. In: Bothe, H., de Bruijn, E J. and Newton, W. E. (ed.), Nitrogen fixation: hundred years after. Gustav Fischer, Stuttgart/ New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Jan Hendrik Becking

There are no affiliations available

Personalised recommendations