The Prokaryotes pp 3393-3399 | Cite as

The Genus Pelobacter

  • Bernhard Schink

Abstract

The genus Pelobacter was proposed as a taxonomic entity consisting of strictly anaerobic, Gram-negative, nonsporeforming, rod-shaped bacteria that use only a very limited number of substrates. The members of the genus are all unable to ferment sugars and therefore cannot be grouped with any other genus in the family Bacteroidaceae (Krieg and Holt, 1984). The genus comprises five different species, P. acidi-gallici (Schink and Pfennig, 1982), P. venetianus (Schink and Stieb, 1983), P. carbinolicus (Schink, 1984), P. propionicus (Schink, 1984), and P. acetylenicus (Schink, 1985), which all are based on 3–5 described strains.

Keywords

Sewage Sludge Polyethylene Glycol Anaerobic Degradation Propionic Acid Bacterium Phase Contrast Photomicrograph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Brune, A., and B. Schink. 1990. Conversion of pyrogallol to phloroglucinol, and other hydroxyl transfer reactions catalyzed by cell-free extracts of Pelobacter acidigallici. J. Bacteriol. 172: 1070–1076.PubMedPubMedCentralGoogle Scholar
  2. Bryant, M. P., E. A. Wolin, M. J. Wolin, and R. S. Wolfe. 1967. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Mikrobiol. 59: 20–31.Google Scholar
  3. Conrad, R., F. Bak, H. J. Seitz, B. Thebrath, H. R. Mayer, and H. Schütz. 1989. Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol. Ecol. 62: 285–294.Google Scholar
  4. deBont, J. A. M., and M. W. Peck. 1980. Metabolism of acetylene by Rhodococcus A 1. Arch. Microbiol. 127: 99–104.CrossRefGoogle Scholar
  5. Dubourguier, H. C., E. Samain, G. Prensier, and G. Albagnac. 1986. Characterization of two strains of Pelobacter carbinolicus isolated from anaerobic digestors. Arch. Microbiol. 145: 248–253.CrossRefGoogle Scholar
  6. Dwyer, D. F., and J. M. Tiedje. 1986. Metabolism of polyethylene glycol by two anaerobic bacteria, Desulfovibrio desulfuricans and a Bacteroides sp. Appl. Environ. Microbiol. 52: 852–856.PubMedPubMedCentralGoogle Scholar
  7. Eichler, B., and B. Schink. 1984. Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicurn sp. nov., a homoacetogenic anaerobe. Arch. Microbiol. 140: 147–152.CrossRefGoogle Scholar
  8. Eichler, B., and B. Schink. 1985. Fermentation of primary alcohols and diols and pure culture of syntrophically alcohol-oxidizing anaerobes. Arch. Microbiol. 143: 60–66.CrossRefGoogle Scholar
  9. Evans, W. C. 1977. Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature 270: 17–22.PubMedCrossRefGoogle Scholar
  10. Goldberg, J., and C. L. Cooney. 1981. Formation of short-chain fatty acids from H2 and CO2 by a mixed culture of bacteria. Appl. Environ. Microbiol. 41: 148–154.PubMedPubMedCentralGoogle Scholar
  11. Krieg, N. R., and J. G. Holt. 1984. Bergey’s manual of systematic bacteriology, vol. 1. Williams and Wilkins, Baltimore.Google Scholar
  12. Krumholz, L. R., and M. P. Bryant. 1986. Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch. Microbiol. 144: 8–14.Google Scholar
  13. Oppermann, E B., A. Steinbüchel, and H. G. Schlegel. 1988. Utilization of methylacetoin by the strict anaerobe Pelobacter carbinolicus and consequences for the catabolism of acetoin. FEMS Microbiol. Lett. 55: 47–52.Google Scholar
  14. Pfennig, N. 1978. Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin 13,2-requiring member of the family Rhodospirillaceae. Int. J. Syst. Bacteriol. 23: 283–288.Google Scholar
  15. Samain, E., G. Albagnac, H. C. Dubourguier, and J. R Touzel. 1982. Characterization of a new propionic acid bacterium that ferments ethanol and displays a growth factor dependent association with a Gram-negative homoacetogen. FEMS Microbiol. Lett. 15: 69–74.Google Scholar
  16. Samain, E., G. Albagnac, and H. C. Dubourguier. 1986. Initial steps of catabolism of trihydroxybenzenes in Pelobacter acidigallici. Arch. Microbiol. 144: 242–244.CrossRefGoogle Scholar
  17. Schink, B. 1984. Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C2 compounds. Arch. Microbiol. 137: 33–41.CrossRefGoogle Scholar
  18. Schink, B. 1985. Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. Arch. Microbiol. 142: 295–301.CrossRefGoogle Scholar
  19. Schink, B., and N. Pfenning. 1982. Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov., sp. nov., a new strictly anaerobic, nonsporeforming bacterium. Arch. Microbiol. 133: 195–201.CrossRefGoogle Scholar
  20. Schink, B., and M. Stieb. 1983. Fermentative degradation of polyethylene glycol by a strictly anaerobic, Gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov. Appl. Environ. Microbiol. 45: 1905–1913.PubMedPubMedCentralGoogle Scholar
  21. Schink, B., D. R. Kremer, and T. A. Hansen. 1987. Pathway of propionate formation from ethanol in Pelobacter propionicus. Arch. Microbiol. 147: 321–327.CrossRefGoogle Scholar
  22. Schink, B., T. J. Phelps, B. Eichler, and J. G. Zeikus. 1985. Comparison of ethanol degradation pathways in anoxic freshwater environments. J. Gen. Microbiol. 131: 651–660.Google Scholar
  23. Seitz, H.-J., B. Schink, and R. Conrad. 1988. Thermodynamics of hydrogen metabolism in methanogenic co-cultures degrading ethanol or lactate. FEMS Microbiol. Lett. 55: 119–124.Google Scholar
  24. Stackebrandt, E., U. Wehmeyer, and B. Schink. 1989. The phylogenetic status of Pelobacter acidigallici, Pelobacter venetianus, and Pelobacter carbinolicus. 1989. System. Appl. Microbiol. 11: 257–260.CrossRefGoogle Scholar
  25. Stams, A. J. M., D. R. Kremer, K. Nicolay, G. H. Wenk, and T. A. Hansen. 1984. Pathway of propionate formation in Desulfobulbus propionicus. Arch. Microbiol. 139: 167–173.CrossRefGoogle Scholar
  26. Strass, A., and B. Schink. 1986. Fermentation of polyethylene glycol via acetaldehyde in Pelobacter venetianus. Appl. Microbiol. Biotechnol. 35: 37–42.Google Scholar
  27. Tanaka, K., and N. Pfenning. 1988. Fermentation of 2methoxyethanol by Acetobacterium malicum sp. nov. and Pelobacter venetianus. Arch. Microbiol. 149: 181–187.CrossRefGoogle Scholar
  28. Wagener, S., and B. Schink. 1987. Anaerobic degradation of nonionic and anionic surfactants in enrichment cultures and fixed-bed reactors. Wat. Res. 21: 615–622.CrossRefGoogle Scholar
  29. Wagener, S., and B. Schink. 1988. Fermentative degradation of nonionic surfactants and polyethylene glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria. Appl. Environ. Microbiol. 54: 561–565.PubMedPubMedCentralGoogle Scholar
  30. Widdel, F., and N.. Pfenning. 1981. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov. sp. nov. Arch. Microbiol. 129: 395–400.PubMedCrossRefGoogle Scholar
  31. Widdel, E, G.-W. Kohring, and E Mayer. 1983. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch. Microbiol. 134: 286–294.CrossRefGoogle Scholar
  32. Wieringa, K. T. 1940. The formation of acetic acid from CO2 and H2 by anaerobic bacteria. Antonie van Leeuwenhoek 6: 251–262.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Bernhard Schink

There are no affiliations available

Personalised recommendations