Differentiation Patterns in Eye Lens Fibers

  • Ennio Lucio Benedetti
  • Irène Dunia
Chapter
Part of the Perspectives in Vision Research book series (PIVR)

Abstract

The morphology and molecular interactions of lens fiber plasma membrane and cytoskeletal constituents are of particular interest with respect to the formation of specialized membrane domains, to the dynamics of lens accommodation, to aging, and to the cataractous process. We attempt to explore the chemical and ultrastructural features of the interfiber junctions and the existence of physical and/or biochemical relationships between lens fiber plasma membranes and those proteins that in a rather broad terminology are classified as cell motility or cytoskeletal constituents (Burridge et al., 1988; Geiger, 1985; Niggli and Burger, 1987).

Keywords

Intermediate Filament Hereditary Spherocytosis Lens Fiber Membrane Skeleton Intermediate Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. A., and Lovrien, R. E., 1984, Glycophorin is linked by band 4.1 protein to the human erythrocyte membrane skeleton, Nature 307:655–658.PubMedCrossRefGoogle Scholar
  2. Benedetti, E. L., Dunia, I., Ramaekers, F. C. S., and Kibbelaar, M. A., 1981, Lenticular plasma membranes and cytoskeleton, in: Molecular and Cellular Biology of the Eye Lens (H. Bloemen-dal, ed.), John Wiley and Sons, New York, pp. 137–184.Google Scholar
  3. Bennett, V., 1985, The membrane skeleton of human erythrocytes and its implications for more complex cells, Annu. Rev. Bio-chem. 54:273–304.CrossRefGoogle Scholar
  4. Buck, C.A., and Horwitz, A. F., 1987, Cell surface receptors for extracellular matrix molecules, Annu. Rev. Cell Biol. 3:179–205.PubMedCrossRefGoogle Scholar
  5. Bum, P., 1988, Amphitropic proteins: A new class of membrane proteins, Trends Biochem. Sci. 13:79–83.CrossRefGoogle Scholar
  6. Burridge, K., Kelly, T., and Mangeat, P., 1982, Nonerythrocyte spectrins: Actin-membrane attachment proteins occurring in many cell types, J. Cell Biol. 95:478–486.PubMedCrossRefGoogle Scholar
  7. Burridge, K., Beckerle, M., Croall, D., and Horwitz, A., 1987, A transmembrane link between the extracellular matrix and the cytoskeleton, in: Molecular Mechanisms in the Regulation of Cell Behavior, Modern Cell Biology., Vol. 5 (B. H. Satir, ed.), Alan, R. Liss, New York, pp. 147–149.Google Scholar
  8. Burridge, K., Fath, K., Kelly, T., Nuckolls, G., and Turner, C., 1988, Focal adhesions: Transmembrane junctions between the extracellular matrix and the cytoskeleton, Annu. Rev. Cell Biol. 4:487–525.PubMedCrossRefGoogle Scholar
  9. Cartaud, A., Courvalin, J. C., Ludosky, M. A., and Cartaud, J.,1989, Presence of an immunologically-related form of lamin B in the postsynaptic membrane of Torpedo marmorata elec-trocyte, J. Cell Biol. 109:1745–1752.PubMedCrossRefGoogle Scholar
  10. Chasis, J. A., and Mohandas, N., 1986, Erythrocyte membrane deformability and stability: Two distinct membrane properties that are independently regulated by skeletal proteins associations, J. Cell Biol. 103:343–350.PubMedCrossRefGoogle Scholar
  11. Drenckhahn, D., and Bennett, V., 1987, Polarized distribution of M. 210,000 and 190,000 analogs of erythrocyte ankyrin along the plasma membrane transporting epithelia, neurons and photoreceptors, Eur. J. Cell Biol. 43:479–486.PubMedGoogle Scholar
  12. Dunia, I., Lien, D. N., Manenti, S., and Benedetti, E. L., 1985, Dilemmas of the structural and biochemical organization of lens membranes during differentiation and aging. Curr. Eye Res. 4(11):1219–1234.PubMedCrossRefGoogle Scholar
  13. Dunia, I., Manenti, S., Rousselet, A., and Benedetti, E. L., 1987, Electron microscopic observations of reconstituted pro-teoliposomes with the purified major intrinsic membrane protein of eye lens fibers, J. Cell Biol. 105:1679–1689.PubMedCrossRefGoogle Scholar
  14. Franke, W. W., Kapprell, H. P., and Cowin, P., 1987, Plakoglobin is a component of the filamentous subplasmalemmal coat of lens cells, J. Cell Biol. 43:301–315.Google Scholar
  15. Geiger, B., 1985, Microfilament-membrane interaction, Trends Biochem. Sci. 10:456–461.CrossRefGoogle Scholar
  16. Georgatos, S. D., and Blobel, G., 1987a, Two distinct attachment sites for vimentin along the plasma membrane and the nuclear envelope in avian erythrocytes: A basis for a vectorial assembly of intermediate filaments, J. Cell Biol. 105:105–115.PubMedCrossRefGoogle Scholar
  17. Georgatos, S. D., and Blobel, G., 1987b, Lamin B constitutes an intermediate filament attachment site at the nuclear envelope, J. Cell Biol. 105:117–125.PubMedCrossRefGoogle Scholar
  18. Georgatos, S.D., and Marchesi, V. T., 1985, The binding of vimentin to human erythrocyte membranes: A model system for the study of intermediate filament-membrane interactions, J. Cell Biol. 100:1955–1961.PubMedCrossRefGoogle Scholar
  19. Georgatos, S. D., Weaver, D., and Marchesi, V. T., 1985, Site specificity in vimentin-membrane interactions: Intermediate filament subunits associated with the plasma membrane via their head domains, J. Cell Biol. 100:1962–1967.PubMedCrossRefGoogle Scholar
  20. Girsh, S. J., and Peracchia, C., 1985, Lens cell-to-cell channel protein. I. Self assembly into liposomes and permeability regulation by calmodulin, J. Membr. Biol. 83:217–225.CrossRefGoogle Scholar
  21. Godman, G. C., Miranda, A. F., Deitch, A. D., and Tanenbaum, S. W., 1975, Action of cytochalasin D on cells of established lines. III Zeiosis and movements at the cell surface, J. Cell Biol. 64:644–660.PubMedCrossRefGoogle Scholar
  22. Hall, T. G., and Bennett, V. ,1987, Regulatory domains of erythrocyte ankyrin, J. Biol. Chem. 262(22): 10537–10545.PubMedGoogle Scholar
  23. Harding, C. V., Susan, R. S., Lo, W. K., Bobrowski, W. F., Maisel, H., and Chylack, L. T, 1985, The structure of the human cataractous lens, in: The Ocular Lens (H. Maisel, ed.), Marcel Dekker, New York, pp. 367–389.Google Scholar
  24. Johnson, K. R., Lampe, P. D., Hur, K. C., Louis, C. F., and Johnson, R. G., 1986, A lens intercellular junction protein, MP26, is a phosphoprotein, J. Cell Biol. 102:1334–1343.PubMedCrossRefGoogle Scholar
  25. Kistler, J., and Bullivant, S., 1989, Structural and molecular biology of the eye lens membranes, Crit. Rev. Biochem. Mol. Biol. 24(2):151–181.PubMedCrossRefGoogle Scholar
  26. Krohne, G., and Benavente, R., 1986, The nuclear lamins, Exp. Cell. Res. 162:1–10.PubMedCrossRefGoogle Scholar
  27. Langanger, G., De Mey, J., Moeremans, M., Daneels, G. U., De Brabander, M., and Small, J. V., 1984, Ultrastructural localization of α-actinin and filamin in cultured cells with the immu-nogold staining (IGS) method, J. Cell Biol. 99:1324–1334.PubMedCrossRefGoogle Scholar
  28. Lazarides, E., and Moon, R. T., 1984, Assembly and topogenesis of the spectrin-based membrane skeleton in erythroid development, Cell 37:354–356.PubMedCrossRefGoogle Scholar
  29. Lazarides, E., and Nelson, W. J., 1982, Expression of spectrin in nonerythroid cells, Cell 31:505–508.PubMedCrossRefGoogle Scholar
  30. Lien, N. D., Paroutaud, P., Dunia, I., Benedetti, E. L., and Hoebeke, J., 1985, Sequence analysis of peptide fragments from the intrinsic membrane protein of calf lens fibers MP26 and its natural maturation product MP22, FEBS Lett. 181(1):74–78.CrossRefGoogle Scholar
  31. Manenti, S., Dunia, L, Le Maire, M., and Benedetti, E. L., 1988, High-performance liquid chromatography of the main polypeptide (MP26) of lens fiber plasma membranes solubilized with n-octyl ß-D-glycopyranoside, FEBS Lett. 233(1): 148–152.PubMedCrossRefGoogle Scholar
  32. Moon, R. T., and Lazarides, E., 1984, Biogenesis of the avian erythroid membrane skeleton: Receptor-mediated assembly and stabilization of ankyrin (goblin) and spectrin, J. Cell Biol. 98:1899–1904.PubMedCrossRefGoogle Scholar
  33. Niggli, V., and Burger, M. M., 1987, Interaction of the cytoskeleton with the plasma membrane, J. Membr. Biol. 100:97–121.PubMedCrossRefGoogle Scholar
  34. Palek, J., 1987, Hereditary elliptocytosis, spherocytosis and related disorders: Consequences of a deficiency or a mutation of membrane skeletal proteins, Blood Rev. 1:147–168.PubMedCrossRefGoogle Scholar
  35. Partridge, T. A., Morgan, J. E., Coulton, G. R., Hoffman, E. P., and Kunkel, L. M., 1989, Conversion of mdx myofibres from dystrophin-negative to positive by injection of normal myoblasts, Nature 337:176–179.PubMedCrossRefGoogle Scholar
  36. Ramaekers, F. C. S., Dunia, I., Dodemont, H. J., Benedetti, E. L.,and Bloemendal, H., 1982, Lenticular intermediate-sized filaments: Biosynthesis and interaction with plasma membrane, Proc. Natl. Acad. Sci. U.S.A. 79:3208–3212.PubMedCrossRefGoogle Scholar
  37. Revel, J. P., Yancey, S. B., Nicholson, B. J., and Hoh, J., 1987, Sequence diversity of gap junction proteins, in: Junctional Complexes of Epithelial Cells, Ciba Foundation Symposium 125 (G. Bock and S. Clark, eds.), John Wiley & Sons, Chichester, pp. 108–127.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Ennio Lucio Benedetti
    • 1
  • Irène Dunia
    • 1
  1. 1.Institute Jacques Monod, CNRSUniversity of Paris VIIParisFrance

Personalised recommendations