Short-Term and Long-Term Adaptative Changes in Eye—Head Movement Coordination Resulting from Reduced Peripheral Vision

  • G. M. Gauthier
  • J. L. Semmlow
  • J. L. Vercher
  • C. Pedrono
  • G. Obrecht
Chapter
Part of the Perspectives in Vision Research book series (PIVR)

Abstract

Fine visual discrimination of an object requires stabilization of the image on the fovea. If the head is immobile and the target in motion, the smooth pursuit system and the saccadic system cooperate first to move the eyes in the direction of the object then to maintain its image in the fovea. In such a task, visual discrimination may start after a delay of the order of 300 msec for a target presented and set into motion 10° from the fovea. Indeed, the saccadic and the smooth pursuit systems have a reaction time of 200 and 130 msec, respectively, whereas a 10° saccade lasts about 100 msec (Robinson, 1981). When the head and the eyes move in the direction of the target, the final position of the eyes in space is the result of the linear summation of the position of the eyes in the orbits and the position of the head in space. To reach such final positions both the eyes and the head move according to particular patterns showing definite eye and head coordination (Bizzi et al., 1972).

Keywords

Head Movement Head Rotation Peripheral Vision Target Eccentricity Illusory Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bizzi, E., Kalil, R. E., and Morasso, P., 1972, Two modes of active eye-head coordination in monkeys, Brain Res. 40:45–48.PubMedCrossRefGoogle Scholar
  2. Droulez, J., and Cornilleau, V., 1986, Adaptive changes in perceptual responses on visuomanual coordination during exposure to visual metrical distorsion, Vision Res. 26:1783–1792.PubMedCrossRefGoogle Scholar
  3. Gauthier, G. M., and Robinson, D. A., 1975, Adaptation of the human vestibuloocular reflex to magnifying lenses, Brain Res. 92:331–335.PubMedCrossRefGoogle Scholar
  4. Gauthier, G. M., Martin, B. J., and Stark, L. W., 1986, Adapted head-and-eye movement responses to added head inertia, Aviat. Space Environ. Med. 57:336–342.PubMedGoogle Scholar
  5. Gauthier, G. M., Obrecht, G., Pedrono, C., Vercher, J.-L., and Stark, L., 1987, Adaptative optimization of eye-head coordination with degraded peripheral vision, in: From Physiology to Cognition (J. K. O’Regan and A. Lévy-Schoen, eds., Elsevier/North-Holland, Amsterdam, pp. 201–210.Google Scholar
  6. Gonshor, A., and Melvill-Jones, G., 1976, Extreme vestibuloocular adaptation induced by prolonged optical reversal of vision, J. Physiol. (Lond.) 256:381–414.Google Scholar
  7. Melvill-Jones, G., Guitton, D., and Bertthez, A., 1988, Changing patterns of eye-head coordination during 6 h of optically reversed vision, Exp. Brain Res., 69:531–544.PubMedCrossRefGoogle Scholar
  8. Miles, F. A., and Fuller, J. H., 1974, Adaptive plasticity in the vestibulo-ocular responses of the rhesus monkey, Brain Res. 80:512–516.PubMedCrossRefGoogle Scholar
  9. Pedrono, C., Obrecht, G., and Stark, L., 1987, Eye-head coordination with laterally “modulated” gaze field, Am. J. Optomet. Physiol. Optics 64:853–860.CrossRefGoogle Scholar
  10. Robinson, D. A., 1981, Control of eye movements, in: Handbook of Physiology. The Nervous System (V. B. Brooks, ed.), American Physiological Society, Bethesda, pp. 1275–1336.Google Scholar
  11. Rollero, R., Vercher, J. L., Semmlow, J. L., and Gauthier, G. M., 1990, Ultrasonic two-axis rotation detector, IEEE Trans. Biomed. Eng. 37:450–457.PubMedCrossRefGoogle Scholar
  12. Semmlow, J., Gauthier, G., and Vercher, J. L., 1986, Instrumentation for Determining Acquisition Times, Interim Report, Essilor International, Creteil, France.Google Scholar
  13. Semmlow, J. L., Gauthier, G. M., and Vercher, J. L., 1989, Short term adaptive modification of saccadic amplitude, J. Exp. Psychol. 15:249–258.Google Scholar
  14. Semmlow, J. L., Gauthier, G. N., and Vercher, J. L., 1990, Identification of peripheral visual images in a laterally restricted gaze field, Percept. Motor Skills 70: 175–194.PubMedGoogle Scholar
  15. Wolf, W., Deubel, H., and Hauske, G., 1983, Properties of parametric adjustment in the saccadic system, in: Theoretical and Applied Aspects of Eye Movement Research (G. Stelman and P. Vroon, eds.), North-Holland, Amsterdam, pp. 79–86.Google Scholar
  16. Zangemeister, W., and Stark, L., 1982, Types of gaze movement: Variable interactions of eye and head movements, Exp. Neurol. 77:563–577.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • G. M. Gauthier
    • 1
  • J. L. Semmlow
    • 2
  • J. L. Vercher
    • 1
  • C. Pedrono
    • 3
  • G. Obrecht
    • 3
  1. 1.Sensorimotor Control LaboratoryUniversity of ProvenceMarseilles Cedex 13France
  2. 2.Department of Biomedical EngineeringRutgers UniversityPiscatawayUSA
  3. 3.Laboratory of Physiological OpticsEssilor InternationalCreteilFrance

Personalised recommendations