The DAMOCLES Monte Carlo Device Simulation Program

  • Steven E. Laux
  • Massimo V. Fischetti
Chapter
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 113)

Abstract

The DAMOCLES program (Device Analysis using Monte Carlo et Poisson solver) brings together an advanced Monte Carlo transport model where carriers move in a self-consistent electric field, and a flexible representation of the two-dimensional device geometry and doping. The result is a single simulation code capable of treating a multitude of device types (MOSFET, MESFET, Bipolar, HEMT) and semiconductors (electrons in Si, Ge, unstrained SiGe, GaAs, InP, A1As, InAs, GaP, AlGaAs, InGaAs, GaInP; holes in Si). An associated interactive graphics package facilitates the interpretation of the simulation results.

For purposes of this workshop, rather that dwell on our accomplishments and successes, we chose rather to summarize our work in the area of Monte Carlo device simulation, and then focus on some failures and work in progress.

Keywords

Bipolar Transistor Device Simulation Boltzmann Transport Equation Velocity Overshoot Flexible Represen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. W. Hockney and J. W. Eastwood, “Computer Simulation Using Particles”, Maidenhead: McGraw-Hill, 1981.Google Scholar
  2. [2]
    C. Jacoboni and P. Lugli, “The Monte Carlo Method for Semiconductor Device Simulation”, New York: Springer, 1989.CrossRefGoogle Scholar
  3. [3]
    M. V. Fisehetti and S. E. Laux, “Monte Carlo Analysis of Electron Transport in Small Semiconductor Devices Including Band-Structure and Space-Charge Effects”, Phys. Rev. B, vol. 38, p. 9721–8745, 1988.CrossRefGoogle Scholar
  4. [4]
    S. E. Laux and M. V. Fisehetti, “Monte Carlo Simulation of Submicrometer Si n-MOSFETs at 77 and 300 K”, IEEE Electron Device Lett., vol. EDL-9, p. 467–469, 1988.CrossRefGoogle Scholar
  5. [5]
    M. V. Fischetti and S. E. Laux, “Monte Carlo Simulation of Submicron Si MOSFETs”, Sim-ulation of Semiconductor Devices and Processes, vol. 3, G. Baccarani and M. Rudan (ed.), Technoprint, Bologna, Italy, p. 349–368, 1988.Google Scholar
  6. [6]
    M. V. Fisehetti, S. E. Laux and D. J. DiMaria, “The Physics of Hot Electron Degradation of Si MOSFETs: Can We Understand It?”, Applied Surface Science., vol. 39, p. 578–596, 1989.CrossRefGoogle Scholar
  7. [7]
    M. V. Fisehetti, S. E. Laux and W. Lee, “Monte Carlo Simulation of Hot-Carrier Transport in Real Semiconductor Devices”, Solid-State Electronics, vol. 32, p. 1723–1729, 1989.CrossRefGoogle Scholar
  8. [8]
    W. Lee, S. E. Laux. M. V. Fisehetti and D. D. Tang, “Monte Carlo Simulation of Non-Equilibrium Transport in Ultra-Thin Base Si Bipolar Transistors”, Technical Digest, 1989 International Electron Devices Meeting, p. 473–476, 1989.Google Scholar
  9. [9]
    M. V. Fisehetti and S. E. Laux, “Are GaAs MOSFETs Worth Building? A Model-Based Comparison of Si and GaAs n-MOSFETs”, Technical Digest. 1989 International Electron Devices Meeting, p. 481 – 484, 1989.Google Scholar
  10. [10]
    S. E. Laux, M. V. Fisehetti and D. J. Frank, “Monte Carlo Analysis of Semiconductor Devices: The DAMOCLES Program”, IBM J. Res. Develop., vol. 34, July 1990. (scheduled for publication)Google Scholar
  11. [11]
    M. V. Fisehetti, “Monte Carlo Simulation of Transport in Technologically Significant Semiconductors of the Diamond and Zinc-blende Structures. Part I: Homogeneous Transport”, submitted to IEEE Trans. Electron Devices. Google Scholar
  12. [12]
    M. V. Fisehetti and S. E. Laux, “Monte Carlo Simulation of Transport in Technologically Significant Semiconductors of the Diamond and Zinc-blende Structures. Part II: Submicron MOSFETs”, submitted to IEEE Trans. Electron Devices. Google Scholar
  13. [13]
    H. Shichijo and K. Hess, “Band-Structure-Dependent Transport and Impact Ionization in GaAs”. Phys. Rev. B, vol. 23, 4197–4207, 1981.CrossRefGoogle Scholar
  14. [14]
    A. Phillips, Jr. and P. J. Price, “Monte Carlo Calculations on Hot Electron Tails”, Appl. Phys. Lett.,vol. 30,528–530, 1977.CrossRefGoogle Scholar
  15. [15]
    G. A. Sai-Halasz, M. R. Wordeman, D. P Kern, S. Rishlon and E. Ganin. “High Transcon-ductance and Velocity Overshoot in NMOS Devices at the 0.l-μm Gate-Length Level”, IEEE Electron Device Lett., vol. 9, 464–466, 1988.CrossRefGoogle Scholar
  16. [16]
    B. K. Ridley, “Reconciliation of the Convvcll-Weisskopf and Brooks-Herring Formulae for Charged-lmpurity Scattering in Semiconductors: Third- Body Interference”, J. Phys. C., vol. 10. 1589–1593, 1977.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Steven E. Laux
    • 1
  • Massimo V. Fischetti
    • 1
  1. 1.IBM Research DivisionT. J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations