State-Variable Representation Revisited, Application to Some Control Problems

  • Michel Fliess
Part of the Progress in Systems and Control Theory book series (PSCT, volume 2)

Abstract

A new philosophy on state-variable realization is presented via methods from differential algebra. Some applications to specific control problems are briefly discussed.

Keywords

Algebraic Differential Equation Differential Algebra Algebraic Extension Transcendence Degree Ground Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Blomberg and R. Ylinen. Algebraic Theory of Multivariable Linear Systems, Academic Press, London, 1983.Google Scholar
  2. [2]
    B. Charlet, J. Levine, and R. Marino, Two sufficient conditions for dynamic feedback linearization of nonlinear systems, in “Analysis and Optimization of Systems”, A. Bensoussan and J.L. Lions eds., Lect. Notes Control Inform. Sci. 111, pp.181–192, Springer-Verlag, Berlin, 1988.CrossRefGoogle Scholar
  3. [3]
    D. Claude, Everything you always wanted to know about linearization, in “Algebraic and Geometric Methods in Nonlinear Control Theory”, M. Fliess and M. Hazewinkel eds., pp.181–220, Reidel, Dordrecht, 1986.CrossRefGoogle Scholar
  4. [4]
    P. Deligne, Equations différentielles à points singuliers réguliers, Lect. Notes Math. 163, Springer-Verlag, Berlin, 1970.Google Scholar
  5. [5]
    M. Fliess, Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives, Invent. Math., 71, pp.521–533, 1983.CrossRefGoogle Scholar
  6. [6]
    M. Fliess, A note on the invertibility of nonlinear input-output systems, Systems Control Lett., 8, pp.147–151, 1986.CrossRefGoogle Scholar
  7. [7]
    M. Fliess, Nonlinear control theory and differential algebra, in Modelling and Adaptive Control, Ch.I. Byrnes and A. Kurzhanski eds., Lect. Notes Control Inform. Sci. 105, pp.134–145, Springer-Verlag, Berlin, 1988.CrossRefGoogle Scholar
  8. [8]
    M. Fliess, Automatique et corps différentiels, Forum Math., vol.1, 1989.Google Scholar
  9. [9]
    M. Fliess, Generalized linear systems with lumped or distributed parameters, Int. J. Control, 1989.Google Scholar
  10. [10]
    M. Fliess, Généralisation non linéaire de la forme canonique de commande et linéarisation par bouclage, C.R. Acad. Sci. Paris, I-308, pp.377–379, 1989.Google Scholar
  11. [11]
    M. Fliess, Commandabilité, matrices de transfert et modes cachés, C.R. Acad. Sci. Paris, to appear.Google Scholar
  12. [12]
    M. Fliess, Generalized controller canonical forms for linear and nonlinear dynamics, to appear.Google Scholar
  13. [13]
    M. Hasler and J. Neirynck, Circuits non linéaires, Presses Polytechniques Romandes, Lausanne, 1985.Google Scholar
  14. [14]
    R. Hermann, On the accessibility problem in control theory, in “Int. Symp. Nonlinear Diff. Eq. and Nonlinear Mech.”, J.P. LaSalle and S. Lefschetz eds., pp.325–332, Academic Press, New York, 1963.CrossRefGoogle Scholar
  15. [15]
    L.R. Hunt, R. Su and G. Meyer, Global transformations of nonlinear systems, IEEE Trans. Autom. Control, AC-28, pp.24–31, 1983.CrossRefGoogle Scholar
  16. [16]
    A. Isidori, Nonlinear Control Systems: An Introduction, Lect. Notes Control Inform. Sci. 72, Springer-Verlag, Berlin, 1985.CrossRefGoogle Scholar
  17. [17]
    B. Jakubczyck, Existence and uniqueness of realizations of nonlinear systems, SIAM J. Control Optimiz., 18, pp.455–471, 1980.CrossRefGoogle Scholar
  18. [18]
    B. Jakubczyck, Realization theory for nonlinear systems; three approaches, in “Algebraic and Geometric Methods in Nonlinear Control Theory”, M. Fliess and M. Hazewinkel eds., pp.3–31, Reidel, Dordrecht, 1986.CrossRefGoogle Scholar
  19. [19]
    B. Jakubczyck and W. Respondek, On linearization of control systems, Bull. Acad. Polon. Sci. Sér. Math., vol.28, pp.517–522, 1980.Google Scholar
  20. [20]
    R.E. Kalman, Mathematical description of linear systems, SIAM J. Control, 1, pp.152–192, 1963.Google Scholar
  21. [21]
    R.E. Kalman, P.L. Falb and M.A. Arbib, Topics in Mathematical System Theory, McGraw-Hill, New York, 1969.Google Scholar
  22. [22]
    H. Keller and H. Fritz, Design of nonlinear observers by a two-step transformation, in “Algebraic and Geometric Methods in Nonlinear Control Theory”, M. Fliess and M. Hazewinkel eds., pp.89–98, Reidel, Dordrecht, 1986.CrossRefGoogle Scholar
  23. [23]
    E.R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York, 1973.Google Scholar
  24. [24]
    A.J. Krener, Normal forms for linear and nonlinear systems, Contemp. Math., vol.68, pp.157–189, 1987.Google Scholar
  25. [25]
    C. Lobry, Contrôlabilité des systèmes non linéaires, SIAM J. Control, 8, pp.573–605, 1970.CrossRefGoogle Scholar
  26. [26]
    J.F. Pommaret, Lie Pseudogroups and Mechanics, Gordon and Breach, New York, 1988.Google Scholar
  27. [27]
    H.H. Rosenbrock, State Space and Multivariable Theory, Nelson, London, 1970.Google Scholar
  28. [28]
    L.A. Rubel, An elimination theorem for systems of algebraic differential equations, Houston J. Math., 8, pp.289–295, 1982.Google Scholar
  29. [29]
    R. Sommer, Control design for multivariable nonlinear time-varying systems, Int. J. Control, 31, pp.883–891, 1980.CrossRefGoogle Scholar
  30. [30]
    H.J. Sussmann, Existence and uniqueness of minimal realizations of nonlinear systems, Math. Systems Theory, 10, pp. 263–284, 1977.CrossRefGoogle Scholar
  31. [31]
    H.J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems, J. Diff. Equations, 12, pp.95–116, 1972.CrossRefGoogle Scholar
  32. [32]
    D. Williamson, Observation of bilinear systems with application to biological control, Automatica, 13, pp.243–254, 1977.CrossRefGoogle Scholar
  33. [33]
    L.A. Zadeh and C.A. Descer, Linear System Theory: The State Space Approach, McGraw-Hill, New York, 1963.Google Scholar
  34. [34]
    O. Zariski and P. Samuel, Commutative Algebra, vol.1, Van Nostrand, Princeton, N.J., 1958.Google Scholar
  35. [35]
    M. Zeitz, Canonical forms for nonlinear systems, in Geometric Theory of Nonlinear Control Systems, B. Jakubczyck, W. Respondek and K. Tchoń eds, pp.255–278, Widawnictwo Politechniki Wrocławskiej, Wrocław, 1985.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Michel Fliess
    • 1
  1. 1.Laboratoire des Signaux et SystèmesCNRS-ESEGif-sur-Yvette CedexFrance

Personalised recommendations