Blood Flow in Bone

  • Sölve Hellem
  • E. Göran Salerud
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 107)

Abstract

The blood supply is recognized as a vital basis of bone growth and remodeling. However, preference has been given to microvascular studies in other tissues. Until recently, bone was a minor topic in the literature of the microcirculation. In 1691, Clopton Havers [1] described “small canals” transversing cortical bone. He assumed a possible vascular pathway in bone, once regarded as a lifeless supporting frame for soft tissues. Some 250 years later, fundamental investigations confirmed Havers’s theory of vascular canals and clarified the vascular topography of bone. The physiological aspects of blood flow in bone, however, are still a challenge to microvascular research. As a technique for continuous flow registration in bone, laser-Doppler flowmetry (LDF) has been found to fulfill most of the requirements for experimental research.

Keywords

Cancellous Bone Bone Area Skin Blood Flow Mean Blood Pressure Flow Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Havers, C. 1691. Cited from Brookes M., 1971. The Blood Supply of Bone. London, Butterworths.Google Scholar
  2. 2.
    Brookes, M., and R.G. Harrison. 1957. The vascularization of the rabbit femur and tibiofibula. J Anat 91:61.PubMedGoogle Scholar
  3. 3.
    Brånemark, P.-I. 1959. Vital microscopy of bone marrow in rabbit. Scand J Clin Lab Invest 11 (Suppl 38):Google Scholar
  4. 4.
    Rhinelander, F.W. 1968. The normal microcirculation of diaphyseal cortex and its response to fracture. J Bone Joint Surg 50A:784.Google Scholar
  5. 5.
    Trias, A., and A. Fery. 1979. Cortical circulation of long bones. J Bone Joint Surg 61A:1052.Google Scholar
  6. 6.
    Eitel, F., R. K. Schenk, and L. Schweiberer. 1980. Corticale revitalisierung nach Marknagelung an der Hundtibia. Unfallheikunde 83:202–207.Google Scholar
  7. 7.
    Hellem, S., and L. T. Ostrup. 1981. Normal and retrograde blood supply to the body of the mandible in the dog II. Int J Oral Surg 10:31–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Östrup, L. T., and J.M. Fredrickson. 1974. Distant transfer of a free living bone graft by microvascular anastomosis. An experimental study. Plast Reconstr Surg 54:274–285.PubMedCrossRefGoogle Scholar
  9. 9.
    Berggren, A. 1981. Factors influencing survival of free composite bone grafts revascularized by microvascular anastomoses. An experimental study. Thesis, Linköping University, Sweden.Google Scholar
  10. 10.
    Cunningham, G.J. 1960. Microradiography. In Tools of Biological Research, Atkins, ed. Oxford: H.J.B. Blackwell, vol 2.Google Scholar
  11. 11.
    Hellem, S., and L.T. Östrup. 1981. Normal and retrograde blood supply to the body of the mandible in the dog I. Int J Oral Surg 10:23–29.PubMedCrossRefGoogle Scholar
  12. 12.
    Albrektsson, T. 1979. Healing of bone grafts. In vivo studies on tissue reactions at autografting of bone in the rabbit tibia. Thesis, Göteborg University, Sweden.Google Scholar
  13. 13.
    Tothill, P., and J.M. MacPherson. 1980. Limitations of radioactive microspheres as tracers for bone blood flow and extraction ratio studies. Calcif Tissue Int 31:261–265.PubMedCrossRefGoogle Scholar
  14. 14.
    Weiland, A.J., and A. Berggren. 1981. Regional cortical blood flow measured by the hydrogen washout technique in composite canine rib grafts revascularized by microvascular anastomoses. Int J Microsurg 3:13–18.Google Scholar
  15. 15.
    Hellem, S., G.E. Nilsson, and L.S. Jacobsson. 1982. Assessment of cancellous bone blood flow by laser Doppler flowmetry. Int J Microcirc Clin Exp 1:299.Google Scholar
  16. 16.
    Appelgren, L. 1972. Perfusion and diffusion in shock. A study of disturbed tissue-blood exchange in low flow states in canine skeletal muscle by a local clearance technique. Acta Physiol Scand Suppl 378:Google Scholar
  17. 17.
    Töndevold, E., and P. Eliasen. 1982. Blood flow rates in canine cortical and cancellous bone measured with 99Tcm-labelled human albumin microspheres. Acta Orthop Scand 53:7–11.PubMedGoogle Scholar
  18. 18.
    Hellem, S., L.S. Jakobsson, G.E. Nilsson, and D.H. Lewis. 1983. Measurement of microvascular blood flow in cancellous bone using laser Doppler flowmetry and 133Xe-clearance. Int J Oral Surg 12:165–177.PubMedCrossRefGoogle Scholar
  19. 19.
    Indresano, A. T., and M. I. Lundell. 1981. Measurement of regional bone blood flow in the rabbit mandible using the hydrogen washout technique. J Dent Res 60:1365–1370.PubMedCrossRefGoogle Scholar
  20. 20.
    Duncan, C.P., and S.S. Shim. 1977. The autonomic nerve supply of bone-an experimental study of the intraosseous adrenergic nervi vasorum in the rabbit. J Bone Joint Surg 59B:323–330.Google Scholar
  21. 21.
    Tran, M.-A., and J.-P. Géral. 1978. The influence of some vasoactive drugs on bone circulation. Eur J Pharmac 52:109–114.CrossRefGoogle Scholar
  22. 22.
    Tran, M.-A. 1980. The effect of lumbar sympathetic stimulation on the vasculature of bone. Br J Pharmac 70:363–366.CrossRefGoogle Scholar
  23. 23.
    Gross, P. M., D.D. Heistad, and M. L. Marcus. 1979. Neurohumoral regulation of blood flow to bones and marrow. Am J Physiol 237:H440–H448.PubMedGoogle Scholar
  24. 24.
    Hellem, S., L.S. Jakobsson, and G.E. Nilsson. 1983. Microvascular reactions in cancellous bone to halothane-induced hypotension in pigs. J Oral Surg 12:178–185.CrossRefGoogle Scholar
  25. 25.
    Intaglietta, M. 1981. Vasomotion activity, time-dependent fluid exchange and tissue pressure. Mircrovasc Res 21:153–164.CrossRefGoogle Scholar
  26. 26.
    Tenland, T. 1982. On laser Doppler flowmetry. Methods and microvascular applications. Thesis, Linköping University, Sweden.Google Scholar
  27. 27.
    Salerud, E. G., T. Tenland, G.E. Nilsson, and P. Å. Öberg. 1983. Rhythmical variations in human skin blood flow. Int J Microcirc Clin Exp 2:91–102.PubMedGoogle Scholar
  28. 28.
    Nilsson, G. E., T. Tenland, and P. Å. Öberg. 1980. A new instrument for continuous measurement of tissue blood flow by light beating spectroscopy. IEEE Trans Biomed Eng 27:12–19.PubMedCrossRefGoogle Scholar
  29. 29.
    Nilsson, G.E., T. Tenland, and P.Å. Öberg. 1980. Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng 27:597–604.PubMedCrossRefGoogle Scholar
  30. 30.
    Swiontkowski, M., S. Tepic, R. Ganz, and S.M. Perren. 1986. Laser Doppler flowmetry for measurement of femoral head blood flow. Helv Chir Acta 53:55–59.PubMedGoogle Scholar
  31. 31.
    Swiontkowski, M. F., R. Ganz, U. Schlegel, and S. M. Perren. 1987. Laser Doppler flowmetry for clinical evaluation of femoral head osteonecrosis. Clin Orthop Related Res 218:181–185.Google Scholar
  32. 32.
    Kärcher H., H. Radner, J. Engler, and A. Stenzl. 1988. Die Laser-Doppler-Flowmetrie bei der vitalen Knochentransplantation. Experimentelle und klinische Ergebnisse. Handchir Mikrochir Plast Chir 20:266–270.PubMedGoogle Scholar
  33. 33.
    Swiontkowski, M. F., S. Tepic, S. M. Perren, R. Moor, R. Ganz, and B. A. Rahn. 1986. Laser Doppler flowmetry for bone blood flow measurement: correlation with microsphere estimates and evaluation of the effect of intracapsular pressure on femoral head blood flow. J Orthop Res 4:362–371.PubMedCrossRefGoogle Scholar
  34. 34.
    Salerud, E. G., and P. Å. Öberg. 1987. Single-fibre laser Doppler flowmetry: A method for deep tissue perfusion studies. Med Biol Eng Comput 25:329–334.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Sölve Hellem
  • E. Göran Salerud

There are no affiliations available

Personalised recommendations