Detoxification of Pertussis Toxin by Site-Directed Mutagenesis

  • S. Cockle
  • S. Loosmore
  • K. Radika
  • G. Zealey
  • H. Boux
  • K. Phillips
  • M. Klein

Abstract

Pertussis toxin (PT) is a major virulence factor of Bordetella pertussis and also an important protective antigen in vaccines against whooping cough. Unfortunately, the chemical treatments normally used to inactivate the toxin can seriously reduce its immunogenicity; moreover, there are concerns that residual traces of active toxin might possibly account for the rare occurrence of vaccination side-effects. Following recent achievements in cloning and sequencing the TOX operon encoding PT (Locht & Keith, 1986; Nicosia et al. , 1986) , the genetic engineering of a PT analogue lacking toxicity but retaining full immunogenicity has become a major goal in the development of improved pertussis vaccines.

Keywords

Chinese Hamster Ovary Pertussis Toxin Diphtheria Toxin Pertussis Vaccine Bordetella Pertussis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbieri, J.T. and Cortina, G. , 1988, ADP-ribosyltransferase mutations in the catalytic S-1 subunit of pertussis toxin, Infect. Immun., 56:1934–1941.PubMedGoogle Scholar
  2. Burnette, W.N. , Cieplak, W. , Mar, V.L. , Kaljot, K.T. , Sato, H. and Keith, J.M., 1988, Pertussis toxin S1 mutant with reduced enzyme activity and a conserved protective epitope, Science, 242:72–74.PubMedCrossRefGoogle Scholar
  3. Carroll, S.F. and Collier, R.J., 1984, NAD binding site of diphtheria toxin: identification of a residue within the nicotinamide subsite by photochemical modification with NAD, Proc. Natl. Acad. Sci. USA, 81: 3307–3311.PubMedCrossRefGoogle Scholar
  4. Carroll, S.F. and Collier, R.J., 1987, Active site of Pseudomonas aeruginosa exotoxin A. Glutamic acid 553 is photolabelled by NAD and shows functional homology with glutamic acid 148 of diphtheria toxin, J. Biol. Chem., 262:8707–8711.PubMedGoogle Scholar
  5. Locht, C. and Keith, J., 1986, Pertussis toxin gene: nucleotide sequence and genetic organization, Science, 237:1258–1264.CrossRefGoogle Scholar
  6. Nicosia, A. , Perugini, M. , Franzini, C. , Casagli, M.C. , Borri, M.G. , Antoni, G., Almoni, M., Neri, P., Ratti, G. and Rappuoli, R., 1986, Cloning and sequencing of the pertussis toxin genes: operon structure and gene duplication, Proc. Natl. Acad. Sci. USA, 83:4631–4635.PubMedCrossRefGoogle Scholar
  7. Pizza, M., Bartolini, A., Prugnola, A., Silvestor, S. and Rappuoli, R., 1988, Subunit S1 of pertussis toxin: mapping of the regions essential for ADP-ribosyltransferase activity, Proc. Natl. Acad. Sci. USA, 85:7521–7525.PubMedCrossRefGoogle Scholar
  8. Watkins, P.A., Burns, D.L., Kanaho, Y., Liu, T.-Y., Hewlett, E.L. and Moss, J., 1985, ADP-ribosylation of transducin by pertussis toxin, J. Biol. Chem., 260:13478–13482.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • S. Cockle
    • 1
  • S. Loosmore
    • 1
  • K. Radika
    • 1
  • G. Zealey
    • 1
  • H. Boux
    • 1
  • K. Phillips
    • 1
  • M. Klein
    • 1
  1. 1.Connaught Research InstituteWillowdaleCanada

Personalised recommendations