Nephrotoxicity pp 119-126 | Cite as

Early Indicators of Lead Nephropathy

  • F. Khalil-Manesh
  • H. C. Gonick
  • E. Weiler
  • V. Rosen
  • L. Roche
  • A. Mutti
  • E. Bergamaschi
  • R. Alinovi
  • I. Franchi

Abstract

Detection of early lead nephropathy in industrial workers has been difficult, particularly as albuminuria is absent until late stages of the disease (1) . Changes in serum creatinine and blood urea nitrogen (BUN) have proved to be relatively insensitive indices of renal impairment in individual workers, although epidemiological studies in large numbers of workers have indicated a statistically significant increase in both parameters with length of exposure to lead, even when corrected for age (2) . Furthermore, Wedeen (1) demonstrated that lead workers with normal serum creatinine and BUN values may have subtle renal impairment, as indicated by a reduction in glomerular filtration rate (GFR) and abnormal renal biopsies .

Keywords

Proximal Tubule Blood Lead Level Urinary Enzyme Urinary Lead Plasma Lead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. P . Wedeen, D. K. Mallik, and V. Batuman, Detection and treatment of occupational lead nephropathy, Arch. Int. Med. 139 :53 (1979).CrossRefGoogle Scholar
  2. 2.
    R. Lilis, J. Valcinkas, A. Fishbein, et al, Renal function impairment in secondary lead smelter workers : Correlations with zinc protoporphyrins and blood lead levels, J. Environ. Pathol. Toxicol. 2 : 1447 (1979).PubMedGoogle Scholar
  3. 3.
    J. M. Wellwood, B. G. Ellis, R. G. Price, et al, Urinary N-acetyl-ßD-glucosaminidase activities in patients with renal disease, Br. Med. J. 3 : 408 (1975).PubMedCrossRefGoogle Scholar
  4. 4.
    D. A. Feinfeld, J. J. Bourgoignie, G. Fleischner, et al, Ligandinuria in nephrotoxic acute tubular necrosis, Kidney Int . 12 :387 (1977).PubMedCrossRefGoogle Scholar
  5. 5.
    .A. Mutti, S. Lucertini, P. P. Valcari, et al, Urinary excretion of brush-border antigen: early indicator of toxic nephropathy, Lancet 8461 : 914 (1985).CrossRefGoogle Scholar
  6. 6.
    R. A. Goyer, The renal tubule in lead poisoning. I . Mitochondrial swelling and aminoaciduria, Lab. Invest . 19 :71 (1968).PubMedGoogle Scholar
  7. 7.
    R. A. Goyer, Lead and the kidney, Curr. Top. Pathol. 55 :147 (1971).PubMedGoogle Scholar
  8. 8.
    A. A. Mylorie, L. Moore, B. Olyai, et al, Increased susceptibility to lead toxicity in rats fed simplified diets, Environ. Research 15 :57 (1978).CrossRefGoogle Scholar
  9. 9.
    E. Polar, and J. Metcalf, True creatinine chromagen determination in serum and urine by semi-automated analysis, Clin. Chem. 11 :713 (1965).Google Scholar
  10. 10.
    C. W. Bryan, R. C. Jarchow, and J. Maher, Measurement of glomerular filtration rate in small animals without urine collection, J. Lab. Clin. Med. 89 : 845 (1972).Google Scholar
  11. 11.
    R. W. Bosnes and H. H. Tanssky, On the colorimetric determination of creatinine by the Jaffe Procedure, J. Biol. Chem. 158 :581 (1945).Google Scholar
  12. 12.
    C. T. Yuen, P. R. Kind, R. G. Price, et al, Colorimetric assay for Nacetyl-glucosaminadase in pathological urine using the W-nitristyoyl substrate, Ann. Clin. Biochem. 21 :295 (1984).PubMedGoogle Scholar
  13. 13.
    A. Mutti, S. Lucertini, M. Farnari, et al, Urinary excretion of brush-border antigen revealed by monoclonal antibodies in subjects occupationally exposed to heavy metals, Proc. Intern. Conf. on Heavy Metals in the Environment, 1 :565(1985).Google Scholar
  14. 14.
    K. Cramer, R. A. Goyer, R. Jagenburg, et al, Renal ultrastructure, renal function, and parameters of lead toxicity in workers with different periods of lead exposure, Br. J. Indust . Med. 31 : 113 (1974).Google Scholar
  15. 15.
    A. Oskarsson, K. S . Sqiubb, and B. A. Fowler, Intracellular binding of lead in the kidney: The partial isolation and characterization of postmitochondrial lead binding components, Biochem. Biophys . Res . Commun. 104:290 (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    P. L. Goering and B. A. Fowler, Regulation of lead inhibition of delta-aminolevulinic and acid dehydratase by a low molecular weight, high affinity renal lead-binding protein, J. Pharmacol. Exper. Ther. 231 : 66 (1984).Google Scholar
  17. 17.
    P. Mistry, G. W. Lucier, and B. A. Fowler, High affinity lead-binding proteins in rat kidney cytosol mediate cell-free nuclear translocation of lead, J. Pharmacol. Exp. Ther. 232 : 462 (1985).PubMedGoogle Scholar
  18. 18.
    T. H. Hostetter, H. G. Rennke, B. M. Brenner, The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies, Am. J. Med. 72 :375 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    T. H. Hostetter, J. L. Olson, H. G. Rennke, et al, Hyperfiltration in remnant nephrons : A potentially adverse response to renal ablation, Am. J. Physiol.241:F85 (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • F. Khalil-Manesh
    • 1
    • 2
  • H. C. Gonick
    • 1
    • 2
  • E. Weiler
    • 1
    • 2
  • V. Rosen
    • 1
    • 2
  • L. Roche
    • 1
    • 2
  • A. Mutti
    • 3
  • E. Bergamaschi
    • 3
  • R. Alinovi
    • 3
  • I. Franchi
    • 3
  1. 1.Departments of Medicine/Nephrology, Trace Elements Lab.Cedars-Sinai Med. CenterLos AngelesUSA
  2. 2.UCLA School of MedicineLos AngelesUSA
  3. 3.Universita degli Studi di ParmaItaly

Personalised recommendations