Transducin: The Molecular Switch in Visual Excitation and a Model for Biological Coupling Enzymes

  • Yee-Kin Ho
  • Vijay N. Hingorani

Abstract

Visual excitation in vertebrate rod photoreceptor cells involves a light-activated cGMP cascade (for a review see Liebman, et al., 1987). Photoexcitation of rhodopsin leads to the activation of a latent cGMP phosphodiesterase (PDE) in the rod outer segments and results in the rapid hydrolysis of cGMP to 5’-GMP. The transient decrease of cGMP concentration causes the closure of the cation channels within the plasma membrane and the subsequent hyperpolarization of the photoreceptor cell. Transducin, a GTP-binding protein which is composed of three polypeptides (Tα, Mr 40,000 and Tßγ, Mr 37,000 and 8,000), has been shown to mediate the light activation signal from photolyzed rhodopsin to the PDE. The excitation occurs in a two stage amplification cascade. In the dark-adapted state, transducin exists in its latent form where Tα-GDP is associated with Tßγ. Photolyzed rhodopsin catalyzes the exchange of bound GDP for GTP in hundreds of transducin molecules. The Tα-GTP and Tßγ subunits of the activated transducin then dissociate from the rod outer segment membrane. The Tα-GTP activates the latent PDE complex (Pαß, Mr 88,000 and 84,000 and Pγ, Mr 14,000) by removing the inhibitory constraints imposed by Pγ upon the Pαß catalytic sites.

Keywords

Nucleotide Binding Coupling Function Nucleotide Binding Site Coupling Enzyme Visual Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, N., and Dupont, Y., 1985,J. Biol. Chem. 260: 4156–4168.PubMedGoogle Scholar
  2. Cerione, R.A., Kroll, S., Rajaram, R., Unson, C., Goldsmith, P., and Spiegel, A.M., 1988,J. Biol. Chem. 263; 9345–9352.PubMedGoogle Scholar
  3. de Vos, A. M., Tong, L., Milburn, M. V., Matias, P. M., Jancarik, J., Noguchi, S., Nishimura, S., Miura, K., Ohtsuka, E., and Kim, S.-H.,Science 239: 837–952.Google Scholar
  4. Eccleston, J.F., Webb, M.R., Ash, D.E., and Reed, G.H., 1981,J. Biol. Chem. 256: 10774–10777.PubMedGoogle Scholar
  5. Frey, S. E., Hingorani, V. N., Su-Tsai, S.-M., and Ho, Y.-K., 1988,Biochemistry (in press).Google Scholar
  6. Fong, H. K. W., Hurley, J. B., Hopkins, R. S., Miake-Lye, R., Johnson, M. S., Doolittle, R. F., and Simon, M. I., 1986,Proc. Natl. Acad. Sci. U.S.A. 83: 2162–2166.PubMedCrossRefGoogle Scholar
  7. Fung, B. K.-K., 1983,J. Biol. Chem. 258: 10495–10502.PubMedGoogle Scholar
  8. Fung, B. K.-K., and Nash, C. R. , 1983,J. Biol. Chem. 258: 10503–10510.PubMedGoogle Scholar
  9. Halliday, K. R., 1984.J. Cyc. Nuc. Prot. Phos. Res. 9: 435–448.Google Scholar
  10. Hingorani, V.N., 1988, Ph.D. Thesis. Department of Biological Chemistry, University of Illinois at Chicago.Google Scholar
  11. Hingorani, V. N., and Ho, Y.-K., 1987a,Biochemistry 26: 1633–1639.PubMedCrossRefGoogle Scholar
  12. Hingorani, V. N., and Ho, Y.-K., 1987b,FEBS Lett. 220(1): 15–22.PubMedCrossRefGoogle Scholar
  13. Hingorani, V. N., Tobias, D. T., Henderson, J. T., and Ho, Y.-K., 1988a,J. Biol. Chem. 263: 6916–6926.PubMedGoogle Scholar
  14. Hingorani, V.N., Tobias, D.T., and Ho, Y.-K., 1988b, Submitted for publication.Google Scholar
  15. Ho, Y.-K., and Fung, B.K.K., 1984,J. Biol. Chem. 259, 6694–6699.PubMedGoogle Scholar
  16. Hurley, J. B., Fong, H. K. W., Teplow, D. B., Dreyer, W. J., and Simon, M. I., 1984,Proc. Natl. Acad. Sci. U.S.A. 81: 6948–6952.PubMedCrossRefGoogle Scholar
  17. Jurnak, F., 1985,Science 230: 32–36.PubMedCrossRefGoogle Scholar
  18. Kaziro, Y., 1978,Biochim. Biophys. Acta. 505: 95–127.PubMedCrossRefGoogle Scholar
  19. La Cour, T.F.M., Nyborg, J., Thirup, S. and Clark, B.F.C., 1985,EMBO J. 4, 2385–2388.PubMedGoogle Scholar
  20. Liebman, P. A., Parker, K. R., and Dratz, E. A., 1987,Ann. Rev. Physiol. 49: 765–791.CrossRefGoogle Scholar
  21. Medynski, D. C., Sullivan, K. , Smith, D., Van Dop, C., Chang, F. H. , Fung, B.K.-K., Seeburg, P. H., and Bourne, H. R., 1985,Proc. Natl. Acad. Sci. U.S.A. 82: 4311–4315.PubMedCrossRefGoogle Scholar
  22. Navon, S. E., and Fung, B. K.-K., 1988,J. Biol. Chem. 262: 15746–15751Google Scholar
  23. Navon, S. E., and Fung, B. K.-K., 1984,J. Biol. Chem. 259: 6686–6693PubMedGoogle Scholar
  24. Van Dop, C., Tsubokawas, M., Bourne, H. R., and Ramachandran, J., 1984,J. Biol. Chem. 259: 696–698.PubMedGoogle Scholar
  25. Watkins, P. A., Burns, D.L., Kanaho, Y., Liu, T.-Y., Hewlett, E.L. and Moss, J., 1985,J. Biol. Chem. 260: 13478–13482.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Yee-Kin Ho
    • 1
  • Vijay N. Hingorani
    • 1
  1. 1.Department of Biological ChemistryUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations