Purification and Molecular Cloning of Bovine GAP

  • J. B. Gibbs
  • U. S. Vogel
  • M. D. Schaber
  • M. S. Marshall
  • R. E. Diehl
  • E. M. Scolnick
  • R. A. F. Dixon
  • I. S. Sigal

Abstract

The ras oncogenes encode 3 highly homologous proteins: Harvey (Ha), Kirsten (Ki), and N-ras (Barbacid, 1987). These proteins are 21 kDa (p21) and have the biochemical properties of GTP and GDP binding, GTPase activity, and membrane localization. The ras-encoded proteins are present in normal mammalian cells and in cells of diverse evolutionary origin such as yeast, Drosophila, Dictyostelium, and Xenopus. Up to 40% of human tumors have been identified as having a biologically activated ras gene. Activation can occur by point mutations that inhibit GTPase activity or facilitate GTP for GDP nucleotide exhange. By analogy to the GTP/GDP cycle of known guanine nucleotide-binding proteins, both of these activation mechanisms are predicted to promote formation of the biologically active ras p21-GTP complex. Although the target of ras protein in the yeast S. cerevisiae has been identified as adenylyl cyclase (Toda et al., 1985), the ras p21 target in mammalian and other eucaryotic cells has not yet been discovered.

Keywords

Adenylyl Cyclase GTPase Activity GTPase Activate Protein Nonreceptor Tyrosine Kinase Intrinsic GTPase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adari, H., Lowy, D. R., Willumsen, B. M., Der, C. J., and McCormick, F., 1988, Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain, Science, 240:518.PubMedCrossRefGoogle Scholar
  2. Barbacid, M., 1987, Ras genes, Ann. Rev. Biochem., 56:779.CrossRefGoogle Scholar
  3. Broek, D., Samiy, N., Fasano, O., Fujiyama, A., Tamanoi, F., Northrup, J., and Wigler, M., 1985, Differential activation of yeast adenylate cyclase by wild-type and mutant RAS proteins, Cell, 41:763.PubMedCrossRefGoogle Scholar
  4. Cales, C. J., Hancock, J. F., Marshall, C. J., and Hall, A., 1988, The cytoplasmic protein GAP is implicated as the target for regulation by the ras gene product, Nature, 332:548.PubMedCrossRefGoogle Scholar
  5. Defeo-Jones, D., Tatchell, K., Robinson, L. C., Sigal, I. S., Vass, W., Lowy, D. R., and Scolnick, E. M., 1985, Mammalian and yeast ras gene products: biological function in their heterologous systems, Science, 228:179.PubMedCrossRefGoogle Scholar
  6. Deshpande, A. K., and Kung, H. F., 1987, Insulin induction of Xenopus leavis oocyte maturation is inhibited by monoclonal antibody against ras p21 proteins. Mol. Cell Biol., 7:1285.PubMedGoogle Scholar
  7. Feramisco, J. R., Glass, D. B., and Krebs, E. G., 1980, Optimal spatial requirements for the location of basic residues in peptide substrates for the cyclic AMP-dependent protein kinase, J. Biol. Chem., 255:4240.PubMedGoogle Scholar
  8. Field, J., Broek, D., Kataoka, T., and Wigler, M., 1987, Guanine nucleotide activation of, and competition between, RAS proteins from Saccharomyces cerevisiae, Mol. Cell. Biol., 7:2128.PubMedGoogle Scholar
  9. Gibbs, J. B., Schaber, M. D., Marshall, M. S., Scolnick, E. M., and Sigal, I. S., 1987, Identification of guanine nucleotides bound to ras-encoded proteins in growing yeast cells, J. Biol. Chem., 262:10426.PubMedGoogle Scholar
  10. Gibbs, J. B., Schaber, M. D., Allard, W. J., Scolnick, E. M., and Sigal, I. S., 1988, Purification of ras GTPase activating protein from bovine brain, Proc. Natl. Acad. Sci. U.S.A., 85:5026.PubMedCrossRefGoogle Scholar
  11. Kataoka, T., Powers, S., Cameron, S., Fasano, O., Goldfarb, M., Broach, J., and Wigler, M., 1985, Functional homology of mammalian and yeast RAS genes, Cell, 40:19.PubMedCrossRefGoogle Scholar
  12. Kataoka, T., Broek, D., and Wigler, M., 1985, DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase, Cell, 43:493.PubMedCrossRefGoogle Scholar
  13. Korn, L. J., Siebel, C. W., McCormick, F., and Roth, R. A., 1987, ras p21 as a potential mediator of insulin action in Xenopus oocytes, Science, 236:840.PubMedCrossRefGoogle Scholar
  14. Marshall, M. S., Gibbs, J. B., Scolnick, E. M., and Sigal, I. S., 1988, An adenylate cyclase from Saccharomyces cerevisiae that is stimulated by ras proteins with effector mutations, Mol. Cell. Biol., 8:52.PubMedGoogle Scholar
  15. Mayer, B. J., Hamaguchi, M., and Hanafusa, H., 1988, A novel viral oncogene with strutural similarity to phospholipase C., Nature, 332:272.PubMedCrossRefGoogle Scholar
  16. Pike, L. J., Gallis, B., Canellie, J. E., Bornstein, P., and Krebs, E. G., 1982, Epidermal growth factor stimulates the phophorylation of synthetic tyrosine-containing peptides by A-431 cell membranes, Proc. Natl. Acad. Sci. U.S.A., 79:1443.PubMedCrossRefGoogle Scholar
  17. Sigal, I. S., Gibbs, J. B., D’Alonzo, J. S., and Scolnick, E. M., 1986, Identification of effector residues and a neutralizing epitode of Ha-ras encoded p21, Proc. Natl. Acad. Sci. U.S.A., 83:4725.PubMedCrossRefGoogle Scholar
  18. Sigal, I. S., 1988, The ras oncogene, a structure and some function, Nature, 332:485.PubMedCrossRefGoogle Scholar
  19. Sigal, I. S., Marshall, M. S., Schaber, M. D., Vogel, U. S., Scolnick, E. M., and Gibbs, J. B., 1988, Structure-function studies of the ras protein, LIII Cold Spring Harbor Symposium on Quantitative Biology, in press.Google Scholar
  20. Stahl, M. L., Ferenz, C. R., Kelleher, K. L., Kriz, R. W., and Knopf, J. L., 1988, Sequence similarity of phospholipase C with the non-catalytic domain of src, Nature, 332:269.PubMedCrossRefGoogle Scholar
  21. Toda, T., Uno, I., Ishikawa, T., Powers, S., Kataoka, T., Broek, D., Cameron, S., Broach, J., Matsumoto, K., and Wigler, M., 1985, In yeast, RAS proteins are controlling elements of adenylate cyclase, Cell, 40:27.PubMedCrossRefGoogle Scholar
  22. Trahey, M., and McCormick, F., 1987, A cytoplasmic protein stimulates normal N-ras GTPase, but does not affect oncogenic mutants, Science, 238:542.PubMedCrossRefGoogle Scholar
  23. Uno, I., Mitsuzawa, H., Tanaka, K., Oshima, T., and Ishikawa, T., 1987, Identification of the domain of Saccharomyces cerevisiae adenylate cyclase associated with the regulatory function of RAS products, Mol. Gen. Genet., 210:187.PubMedCrossRefGoogle Scholar
  24. Vogel, U. S., Dixon, R. A. F., Schaber, M. D., Diehl, R. E., Marshall, M. S., Scolnick, E. M., Sigal, I. S., and Gibbs, J. B., 1988, Cloning of bovine GAP: a protein that interacts with oncogenic ras p21, Nature, in press.Google Scholar
  25. Wilbur, W. J., and Lipman, D. J., 1983, Rapid similarity searches of nucleic acid and protein data banks, Proc. Natl. Acad. Sci. U.S.A., 80:726.PubMedCrossRefGoogle Scholar
  26. Willumsen, B. M., Papageorge, A. G., Kung, H., Bekesi, E., Robins, T., Johnsen, M., Vass, W. C., and Lowy, D. R., 1986, Mutational analysis of a ras catalytic domain, Mol. Cell. Biol., 6:2646.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • J. B. Gibbs
    • 1
  • U. S. Vogel
    • 1
  • M. D. Schaber
    • 1
  • M. S. Marshall
    • 1
  • R. E. Diehl
    • 1
  • E. M. Scolnick
    • 1
  • R. A. F. Dixon
    • 1
  • I. S. Sigal
    • 1
  1. 1.Department of Molecular Biology, Merck, Sharp, and DohmeResearch LaboratoriesWest PointUSA

Personalised recommendations