Detection of Microgels in EOR Polymers Using Microcapillary Flow

  • Jeffrey H. Sugarman
  • Robert K. Prud’homme
Chapter

Abstract

The success of the use of polymers in enhanced oil recovery operations depends on the ability to inject large volumes of polymer solution into the oil bearing formation. Often, polymer solutions contain small, but significant amounts of insoluble material which can cause plugging of the reservoir [1]. Such damage to the reservoir can be irreversible. Thus, it is important to know the “residue” or “microgel” content of a polymer solution before the solution is injected.

Keywords

Microgel Particle Flow Rate Dependence Hydrodynamic Chromatography Schmitt Trigger Circuit Hydroxypropyl Guar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Chauveteau and N. Kohler, SPE 9295, presented at the 55th Annual Fall Technical Conference and Exhibition of the Society of Petroleum Engineers of AIME, Dallas, TX, September 21–24, 1980.Google Scholar
  2. 2.
    J.R. Purdon, Jr. and R.D. Mate, J. Polym. Sci. A-1, 8: 1306 (1970).CrossRefGoogle Scholar
  3. 3.
    M.R. Ambler, R.D. Mate, and J.R. Purdon, Jr., J. Polym. Sci. Polym. Chem., 12: 1771 (1974).Google Scholar
  4. 4.
    S.W. Almond and W.E. Bland, SPE 12485, presented at the Formation Damage Control Symposium, Bakersfield, CA, February 1984.Google Scholar
  5. 5.
    J.H. Sugarman and R.K. Prud’homme, J. Appl. Polym. Sci.,in press.Google Scholar
  6. 6.
    H.W. Thomas, R.J. French, A.C. Groom, and S. Rowlands, in Fourth Int. Congr. Rheol. Part 4, Interscience (1965).Google Scholar
  7. 7.
    R.J. Noel, K.M. Gooding, F.E. Regnier, D.M. Ball, C. Orr, and M.E. Mullins, J. Chromatogr., 166: 373 (1978).CrossRefGoogle Scholar
  8. 8.
    A.W.J. Brough, D.E. Hillman, And R.W. Perry, J. Chromatogr, 208: 175 (1981).CrossRefGoogle Scholar
  9. 9.
    G. Segre and A. Silberberg, J. Fluid Mech., 14: 136 (1962).CrossRefGoogle Scholar
  10. 10.
    H.L. Goldsmith, Fedn. Am. Socs. exp. Biol., 26: 1813 (1971).Google Scholar
  11. 11.
    B.P. Ho and L.G Leal, J. Fluid Mech., 65: 365 (1974).CrossRefGoogle Scholar
  12. 12.
    H. Small, J. Coll. Sci., 48: 147 (1974).CrossRefGoogle Scholar
  13. 13.
    M.A. Langhorst, F.W. Stanley Jr., S.S. Cutie, J.H. Sugarman, L.R. Wilson, D.A. Hoagland, and R.K. Prud’homme, Anal. Chem., 58: 2242 (1986).CrossRefGoogle Scholar
  14. 14.
    F.M. Kelleher and C.N. Trumbore, Anal. Biochem., 137: 20 (1984).CrossRefGoogle Scholar
  15. 15.
    C.N. Trumbore, M. Grehlinger, M. Stowe, and F.M. Kelleher, J. Chromatogr., 322: 443 (1985).CrossRefGoogle Scholar
  16. 16.
    J.W. Jorgenson and E.J. Guthrie, J. Chromatogr., 255: 335 (1983).CrossRefGoogle Scholar
  17. 17.
    E.J. Guthrie, J.W. Jorgenson, and P.R. Dluzneski, J. Chromatogr. Sci., 22: 171 (1984).Google Scholar
  18. 18.
    J.H. Sugarman and R.K. Prud’homme, Ind. Eng. Chem. Fund.,submitted.Google Scholar
  19. 19.
    G. Holzwarth, Carbohydr. Res., 66: 173 (1978).CrossRefGoogle Scholar
  20. 20.
    A.N. de Beider and K. Granath, Carbohydr. Res., 30: 375 (1973).CrossRefGoogle Scholar
  21. 21.
    D. Blakeslee and M.G. Baine, J. Immunol. Methods, 13: 305 (1976).CrossRefGoogle Scholar
  22. 22.
    H.C. Haas and R.L. MacDonald, J. Polym. Sci. A-1, 9: 3583 (1971).Google Scholar
  23. 23.
    R. Boyadjian, G. Seytre, P. Berticat, and G. Vallet, Eur. Polym. J., 12: 401 (1976).CrossRefGoogle Scholar
  24. 24.
    D.A. Hoagland, Ph.D. Thesis, Princeton University (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Jeffrey H. Sugarman
    • 1
  • Robert K. Prud’homme
    • 1
  1. 1.Department of Chemical EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations