Particle Sizing by Inversion of Extinction Data

  • M. Bertero
  • C. De Mol
  • E. R. Pike

Abstract

We consider the problem of inverting light scattering data, namely extinction data, in order to retrieve information about particle size distributions. In the so-called extinction methods,1 one measures the spectral turbidity of the sample or, in other words, the extinction coefficient τ (k), for different values of the wavenumber k of the incident light. More precisely, k represents a reduced wave number which takes into account the refractive index characterizing the suspension.

Keywords

Singular System Integral Kernel Profile Function Resolution Ratio Equidistant Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. C. van de Hulst, “Light Scattering by Small Particles”, Dover, New York (1981).Google Scholar
  2. 2.
    K. S. Shifrin and A. Ya. Perel’man, The determination of the spectrum of particles in a dispersed system from data on its transparency, Optics and Spectroscopy 15:285 (1963).Google Scholar
  3. 3.
    M. Bertero, C. De Mol and E. R. Pike, Particle size distributions from spectral turbidity: a singular-system analysis, Inverse Problems 2: 247 (1986).MATHCrossRefGoogle Scholar
  4. 4.
    M. Bertero, P. Boccacci, C. De Mol and E. R. Pike, Extraction of polydispersity information in photon correlation spectroscopy; this conference.Google Scholar
  5. 5.
    A. N. Tikhonov and V. Y. Arsenin, “Solutions of Ill-posed Problems”, Wiley, New York (1977).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • M. Bertero
    • 1
  • C. De Mol
    • 2
  • E. R. Pike
    • 3
    • 4
  1. 1.Istituto Nazionale di Fisica NucleareDipartimento di Fisica dell’Università di GenovaGenovaItaly
  2. 2.Département de MathématiqueUniversité Libre de BruxellesBruxellesBelgium
  3. 3.Department of PhysicsKing’s CollegeLondonEngland
  4. 4.RSREGreat MalvernEngland

Personalised recommendations