Chemical and Biochemical Properties of Human Angiogenin

  • Bert L. Vallee
  • James F. Riordan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 234)

Abstract

It is now widely appreciated that neovascularization is essential for the growth and progression of solid tumors. Indeed, this requirement has led to the concept of tumor-induced angiogenesis whereby tumor cells secrete a substance or substances that promote the proliferation of neighboring blood vessels. Such a substance was, in fact, thought to be not only obligatory but also specific and peculiar to malignant cells. As a consequence, a great deal of attention has been directed toward the isolation and characterization of such a material. Containment of neoplastic growth through specific control of the tumor-induced angiogenic process has been suggested to be a potential therapeutic approach and this has added additional impetus to the effort.

Keywords

Rabbit Reticulocyte Lysate Pancreatic Ribonuclease Tumor Conditioned Medium Ribonucleolytic Activity Bovine Pancreatic Ribonuclease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baltzer, F., 1928, Über metagame Geschlechtsbestimmung and ihre Beziehung zu einigen Problemen der Entwicklungsmechanik und Vererbung (auf Grund von Versuchen an Bonellia). Verh. dt. zool. Ges. 32:273.Google Scholar
  2. Barnard, E.A., and Stein, W.D., 1959, The histidine residue in the active centre of ribonuclease I. A specific reaction with bromoacetic acid, J. Mol. Biol. 1:339.Google Scholar
  3. Beintema, J.J., Wietzes, P., Weickmann, J.L., and Glitz, D.G., 1984, The amino acid sequence of human pancreatic ribonuclease, Anal. Biochem. 136:48.Google Scholar
  4. Beintema, J.J., Broos, J., Menlenberg, J., and Schuller, C., 1985, The amino acid sequence of snapping turtle (Chelydra serpentina) ribonuclease, Eur. J. Biochem. 153:305.Google Scholar
  5. Blackburn, P., and Moore, S., 1982, Pancreatic Ribonuclease, in: TheGoogle Scholar
  6. Enzymes (3rd Ed.) Vol 15. P.D. Boyer, ed. Academic Press, New York. Crestfield, A.M., Stein, W.H., and Moore, S., 1963, Alkylation and identification of the histidine residues at the active site of ribonuclease, J. Biol. Chem. 238:2413.Google Scholar
  7. Ehrmann, R.L., and Knoth, M., 1968, Choriocarcinoma: transfilter stimulation of vasoproliferation in the hamster check pouch studied by light and electron microscopy, J. Natl. Cancer Inst. 41:1329.Google Scholar
  8. Fett, J.W., Strydom, D.J., Lobb, R.R., Alderman, E.M„ Bethune, J.L., Riordan, J.F., and Vallee, B.L., 1985, Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells, Biochemistry 24: 5480.Google Scholar
  9. Folkman, J., and Klagsbrun, M., 1987, Angiogenic factors, Science 235: 442.Google Scholar
  10. Gospodarowicz, D., Bialecki, H., and Thakral, T.K., 1979, The angiogenic activity of the fibroblast and epidermal growth factor, Exp. Eye Res. 28:501.Google Scholar
  11. Greenblatt, M., and Shubik, P., 1968, Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique, J. Natl. Cancer Inst. 41:111.Google Scholar
  12. Harper, J.W., Auld, D.S., and Vallee, B.L., 1987, in preparation.Google Scholar
  13. Hirs, C.H.W., Halmann, M., and Kycia, J.H., 1965, Dinitrophenylation and inactivation of bovine pancreatic ribonuclease A, Arch. Biochem. Biophys. 111:209.Google Scholar
  14. Knighton, D., Ausprunk, D., Tapper, D., and Folkman, J., 1977, Avascular and vascular phases of tumor growth in the chick embryo, Br. J. Cancer 35:347.Google Scholar
  15. Kull, F.C., Jr., Brent, D.A., Parikh, I., and Cuatrecasas, P., 1987, Chemical identification of a tumor-derived angiogenic factor, Science 236: 843.Google Scholar
  16. Kurachi, K., Davie, E.W., Strydom, D.J., Riordan, J.F., and ValleeGoogle Scholar
  17. B.L., 1985, Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor, Biochemistry 24: 5494.Google Scholar
  18. Langer, R., and Folkman, J., 1976, Polymers for the sustained release of proteins and other macromolecules, Nature 263: 797.Google Scholar
  19. Lee, R., 1987, unpublished experiments.Google Scholar
  20. Levit, S., and Berger, A., 1976, Ribonuclease S-peptide, a model for molecular recognition, J. Biol. Chem. 247:4768.Google Scholar
  21. Lin, M.C., Gutte, B., Caldi, D.G., Moore, S., and Merrifield, R.B., 1972, Reactivation of des(119–124) ribonuclease A by mixture with synthetic COOH-terminal peptides: the role of phenylalanine 120, J. Biol. Chem. 247:4768.Google Scholar
  22. Lobb, R.R., Alderman, E.M., and Fett, J.W., 1985, Induction of angiogenesis by bovine brain derived class 1 heparin binding growth factor, Biochemistry 24: 4969.Google Scholar
  23. Lobb, R.R., Sasse, J., Sullivan, R., Shing, Y., D’Amore, P., Jacobs, J., and Klagsbrun, M., 1986, Purification and characterization of heparin-binding endothelial cell growth factors, J. Biol. Chem. 261:1924.Google Scholar
  24. Maciag, T., Cerundolo, I.S., Kelley, P.R., and Forand, R., 1979, An endothelial cell growth factor from bovine hypothalamus: Identification and partial characterization, Proc. Natl. Acad. Sci. USA 76:5674.Google Scholar
  25. Olson, K.A., 1987, unpublished experiments.Google Scholar
  26. Palmer, K.A., Scheraga, H.A., Riordan, J.F., and Vallee, B.L., 1986, A preliminary three-dimensional structure of angiogenin, Proc. Natl. Acad. Sci. USA 83:1965.Google Scholar
  27. Richards, F.W., and Vithayathil, P., 1959, The preparation of subtilisin-modified ribonuclease and the separation of the peptide and protein components, J. Biol. Chem. 234:1459.Google Scholar
  28. Richards, F.M., and Wyckoff, H.W., 1971, Bovine pancreatic ribonuclease, in The Enzymes (3rd ed.) Vol 4., P.D. Boyer, Ed. Academic Press, New York.Google Scholar
  29. Richards, F.W., and Wyckoff, H.W., 1973, Ribonuclease S, in Atlas of Molecular Structures in Biology, D.C. Phillips and F.M. Richards, eds. Oxford Univ. Press, London.Google Scholar
  30. Roberts, A.B., Sporn, M.B., Assoian, R.K., Smith, J.M., Roche, N.S., Wakefield, L.M., Heine, U.I., Liotta, L.A., Falanga, V., Kehrl, J.H., and Fauci, A.S., 1986, Transforming growth factor ß: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro, Proc. Natl. Acad. Sci. U.S.A. 83:4167.Google Scholar
  31. St. Clair, D.K., 1987, unpublished experiments.Google Scholar
  32. Schreiber, A.B., Winkler, M.E., and Derynck, R., 1986, Transforming growth factor a: A more potent angiogenic mediator than epidermal growth factor, Science 232: 1250.Google Scholar
  33. Shapiro, R., Riordan, J.F., and Vallee, S.L., 1986, Characteristic ribonucleolytic activity of human angiogenin, Biochemistry 25: 3527.Google Scholar
  34. Shapiro, R., and Vallee, B.L., 1987, Human placental ribonuclease inhibitor abolishes both angiogenin and ribonucleolytic activities of angiogenin, Proc. Natl. Acad. Sci. USA 84:2238.Google Scholar
  35. Shapiro, R., Strydom, D.J., Olson, K.A., and Vallee, B.L., 1987, Isolation of angiogenin from normal human plasma, Biochemistry in press.Google Scholar
  36. Spemann, H., 1938, “Embryonic Development and Induction”, Yale University Press, New Haven.Google Scholar
  37. Spemann, H., and Mangold, H., 1924, Über induktion von embryonalanlagen durch implantation artfremder organisatoren, Arch. Mikrosk. Anat. Entwicklungsmech. 100:599.Google Scholar
  38. Stein, W.H., and Barnard, E.A., 1959, The histidine residue in the active centre of ribonuclease II. The position of this residue in the primary protein chain, J. Mol. Biol. 1:350.Google Scholar
  39. Strydom, D.J., Fett, J.W., Lobb, R.R., Alderman, E.M., Bethune, J.L., Riordan, J.F., and Vallee, B.L., 1985, Amino acid sequence of human tumor derived angiogenin, Biochemistry 24: 5486.Google Scholar
  40. Vallee, B.L., Riordan, J.F., Lobb, R.R., Higachi, N., Fett, J.W., Crossley, G., Bühler, R., Budzik, G., Breddam, K., Bethune, J.L., and Alderman, E.M., 1985, Tumor-derived angiogenesis factors from rat Walker 256 carcinoma: an experimental investigation and review, Experientia 41: 1.Google Scholar
  41. Wissler, J.H., Logemann, E., Meyer, H.E., Krützfeldt, B., Höckel, M., and Heilmeyer, L.M.G. jr., 1987, Bioactive copper-ribonucleo-polypeptide complexes: angio-morphogens of porcine monocytes, Federation Proc. 46: 2192.Google Scholar
  42. Ziche, M., Jones, J., and Gullino, P.M., 1982, Role of prostaglandin E, and copper in angiogenesis, J. Natl. Cancer Inst. 69:475.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Bert L. Vallee
    • 1
  • James F. Riordan
    • 1
  1. 1.Center for Biochemical and Biophysical Sciences and MedicineHarvard Medical SchoolBostonUSA

Personalised recommendations