The Ca2+/Phospholipid-Binding Proteins of the Submembraneous Skeleton

  • Tony Hunter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 234)

Abstract

Among the best characterized substrates for the protein-tyrosine kinases are two proteins with molecular weights between 34 and 39 kDa and pI’s about 7. These proteins have been given a variety of names (Table 1), but I will refer to them here as p36 and p35. It has recently emerged that p36 and p35 are structurally and functionally related to each other and to at least two additional proteins, p67 and p33. All four proteins contain multiple copies of a related 75 amino acid repeat, and all of them bind to phospholipid bilayers in the presence of µM concentrations of Ca2+ and are localized to the inner face of cytoplasmic membranes. The true functions of these proteins are not known, but there are two major schools of thought. The first proposes that these proteins have structural roles in the cortical submembrane skeleton of the cell. The second holds that these proteins act as inhibitors of phospholipase A2, and have called them lipocortins. Here I will review the properties of these proteins, and discuss the evidence for their possible functions.

Keywords

Epidermal Growth Factor Receptor Rous Sarcoma Virus Amino Acid Repeat Chromaffin Granule Phospholipid Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alitalo, K., Ralston, R. R., and Keski-Oja, J. (1984). Distribution of the 36,000 dalton tyrosine protein kinase substrate in drug and epidermal growth factor-treated epithelial cells. Exp. Cell Res. 150: 177–185.Google Scholar
  2. Amini, S., and Kaji, A. (1983). Association of pp36, a phosphorylated form of the presumed target protein for the src protein of Rous sarcoma virus, with the membrane of chicken cells transformed by Rous sarcoma virus. Proc. Natl. Acad. Sci. USA 80: 960–964.Google Scholar
  3. Arrigo, A.-P., Darlix, J.-L., and Spahr, P.-F. (1983). A cellular protein phosphorylated by the avian sarcoma virus transforming gene product is associated with ribonucleoprotein particles. EMBO J. 2: 309–315.PubMedGoogle Scholar
  4. Blackwell, G. J., Carnuccio, R., Di Rosa, M., Flower, R. J., Parente, L., and Persico, P. (1980) Macrocortin: a polypeptide causing the antiphospholipase effect of glucocorticoids. Nature 287: 147–149.PubMedCrossRefGoogle Scholar
  5. Burgoyne, R. D. (1987). Gelsolin and p36 share a similar domain. TIBS 12: 85–86.Google Scholar
  6. Calabretta, B., Battini, R., Kaczmarek, L., de Riel, J. K., and Baserga, R. (1986) Molecular cloning of the cDNA for a growth factor-inducible gene with strong homology to S-100, a calcium-binding protein. J. Biol. Chem. 261: 12628–12632.Google Scholar
  7. Carraway, K. L., Liu, Y., Puett, D., Carraway, K. L., and Carraway, C. A. (1987). Phenothiazine binding by a homolog of calpactin, the pp6osrc tyrosine kinase substrate. FASEB J. 1: 46–50.PubMedGoogle Scholar
  8. Carter, V. C., Howlett, A. R., Martin, G. S., and Bissell, M. J. (1986) The. tyrosine phosphorylation substrate p36 is developmentally regulated in embryonic avian limb and is induced in cell culture. J. Cell Biol. 103: 2017–2024.PubMedCrossRefGoogle Scholar
  9. Cheng, Y. S.-E., and Chen, L. B. (1981). Detection of phosphotyrosinecontaining 36,000 dalton protein in the framework of cells transformed with Rous sarcoma virus. Proc. Natl. Acad. Sci. USA 78: 2388–2392.Google Scholar
  10. Cirino, G., Flower, R. J., Browning, J. L., Sinclair, L. K., and Pepinsky, R. B. (1987). Recombinant human lipocortin I inhibits thromboxane release from guinea-pig isolated perfused lung. Nature 328: 270–272.PubMedCrossRefGoogle Scholar
  11. Cohen, S., and Fava, R. A. (1985). Internalization of functional epidermal growth factor:receptor/kinase complexes in A-431 cells. J. Biol. Chem. 260: 12351–12358.Google Scholar
  12. Cooper, J. A., and Hunter, T. (1981a). Changes in protein phosphorylation in Rous sarcoma virus transformed chicken embryo cells. Mol. Cell. Biol. 1: 165–178.Google Scholar
  13. Cooper, J. A., and Hunter, T. (1981b). Four different classes of retroviruses induce phosphorylation of tyrosines present in similar cellular proteins. Mol. Cell Biol. 1: 394–407.Google Scholar
  14. Cooper, J. A., and Hunter, T. (1982). Discrete primary locations of a tyrosine protein kinase and of three proteins that contain phosphotyrosine in virally transformed chick fibroblasts. J. Cell Biol. 94: 287–296.PubMedCrossRefGoogle Scholar
  15. Cooper, J. A., and Hunter, T. (1983a). Regulation of cell growth and transformation by tyrosine-specific protein kinases: the search for important cellular substrate proteins. Curr. Topics Microbiol. Immunol. 107: 125–161.Google Scholar
  16. Cooper, J. A., and Hunter, T. (1983b). Identification and characterization of cellular targets for tyrosine protein kinases. J. Biol. Chem. 258: 1108–1115.Google Scholar
  17. Cooper, J. A., Bowen-Pope, D. F., Raines, E., Ross, R., and Hunter, T. (1982). Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins. Cell 31: 263–273.PubMedCrossRefGoogle Scholar
  18. Courtneidge, S., Ralston, R., Alitalo, K., and Bishop, J. M. (1983). Subcellular location of an abundant substrate (p36) for tyrosine-specific protein kinases. Mol. Cell. Biol. 3: 340–350.Google Scholar
  19. Creutz, C. E., Dowling, L. G., Sando, J. J., Villar-Palasi, C., Whipple, J. H., and Zaks, W. J. (1983). Characterization of the chromobindins: soluble proteins that bind to the chromaffin granule membrane in the presence of Cat+. J. Biol. Chem. 258: 14664–14674.Google Scholar
  20. Creutz, C. E., Zaks, W. J., Hamman, H. C., Crane, S., Martin, W. H., Gould, K. L., Oddie, K. M., and Parsons, S. J. (1987). Identification of chromaffin granule-binding proteins. J. Biol. Chem. 262: 1860–1868.Google Scholar
  21. Davidson, F. F., Dennis, E. A., Powell, M., and Glenney, J. R. (1987). Inhibition of phospholipase A2 by “lipocortins” and calpactins. J. Biol. Chem. 262: 1698–1705.Google Scholar
  22. Davies, A. A., and Crumpton, M. J. (1985). Identification of calcium-binding proteins associated with the lymphocyte plasma membrane. Biochem. Biophys. Res. Commun. 128: 571–577.Google Scholar
  23. De, B. K., Misono, K. S., Lukas, T. J., Mroczkowski, B., and Cohen, S. (1986) A calcium-dependent 35-kilodalton substrate for epidermal growth factor receptor/kinase isolated from normal tissue. J. Biol. Chem. 261: 13784–13792.Google Scholar
  24. Decker, S. J. (1982). Phosphorylation of the Mr = 34,000 protein in normal and Rous sarcoma virus transformed rat fibroblasts. Biochem. Biophys. Res. Commun. 109: 434–441.Google Scholar
  25. Dorin, J. R., Novak, M., Hill, R. E., Brock, D. H. J., Secher, D. S., and van Heyningen, V. (1986) A clue to the basic defect in cystic fibrosis from cloning the CF antigen. Nature 326: 614–617.CrossRefGoogle Scholar
  26. Drust, D. S., and Creutz, C. E. (1988). Aggregation of chromaffin granules by calpactin at micromolar calcium. Nature, in press.Google Scholar
  27. Edwards, H. C., and Booth, A. G. (1987). Calcium-sensitive, lipid-binding cytoskeletal proteins of the human placental microvillar region. J. Cell Biol. 105: 303–311.PubMedCrossRefGoogle Scholar
  28. Erikson, E., and Erikson, R. L. (1980). Identification of a cellular protein substrate phosphorylated by the avian sarcoma virus-transforming gene product. Cell 21: 829–836.PubMedCrossRefGoogle Scholar
  29. Erikson, E., Cook, R. L., Miller, G. J., and Erikson, R. L. (1981a). The same normal cell protein is phosphorylated after transformation by avian sarcoma viruses with unrelated transforming genes. Mol. Cell. Biol. 1: 43–50.Google Scholar
  30. Erikson, E., Shealy, D. J., and Erikson, R. L. (1981b). Evidence that viral transforming gene products and epidermal growth factor stimulate phosphorylation of the same cellular protein with similar specificity. J. Biol. Chem. 256: 11381–11384.Google Scholar
  31. Erikson, E., Tomasiewicz, H. G., and Erikson, R. L. (1984). Biochemical characterization of a 34-kilodalton normal cellular substrate of pp60src and an associated 6-kilodalton protein. Mol. Cell. Biol. 4: 77–85.Google Scholar
  32. Fava, R. A., and Cohen, S. (1984). Isolation of a calcium-dependent 35-kilodalton substrate for the epidermal growth factor receptor/kinase from A-431 cells. J. Biol. Chem. 259: 2636–2645.Google Scholar
  33. Flower, R. J., and Blackwell, G. J. (1979). Anti-inflammatory steroids induce biosynthesis of a phospholipase A2 inhibitor which prevents prostaglandin generation. Nature 278: 456–459.PubMedCrossRefGoogle Scholar
  34. Flower, R. J., Wood J. N., and Parente, L. (1981). Macrocortin and the mechanism of action of the glucocorticoids. Adv. Inflammation Res. 7: 61–69.Google Scholar
  35. Geisow, M. J. (1986). Common domain structure of Ca2+ and lipid-binding proteins. FEBS Letters 203: 99–103.PubMedCrossRefGoogle Scholar
  36. Geisow, M. J., and Burgoyne, R. D. (1982). Calcium-dependent binding of cytosolic proteins by chromaffin granules from adrenal medulla. J. Neurochem. 38: 1735–1741.PubMedCrossRefGoogle Scholar
  37. Geisow, M. J., and Walker, J. H. (1986) New proteins involved in cell regulation by Ca2+ and phospholipids. TIBS 11: 420–423.Google Scholar
  38. Geisow, M., Childs, J., Dash, H., Harris, A., Panayotou, G., Sûdhof, T., and Walker, J. H. (1984). Cellular distribution of three mammalian Ca2+-binding proteins related to Torpedo calelectrin. EMBO J. 3: 2969–2974.PubMedGoogle Scholar
  39. Geisow, M. J., Fritsche, U., Hexham, J. M., Dash, B., and Johnson, T. (1986). A consensus amino acid sequence repeat in Torpedo and mammalian Ca2+-dependent membrane binding proteins. Nature 320: 636–638.PubMedCrossRefGoogle Scholar
  40. Gerke, V., and Weber, K. (1984). Identity of p36K phosphorylated upon Rous sarcoma virus transformation with a protein purified from brush borders; calcium-dependent binding to non-erythroid spectrin and F-actin. EMBO J. 3: 227–233.PubMedGoogle Scholar
  41. Gerke, V., and Weber, K. (1985a). Calcium-dependent conformational changes in the 36-kDa subunit of intestinal protein 1 related to the cellular 36-kDa target of Rous sarcoma virus tyrosine kinase. J. Biol. Chem. 260: 1688–1695.Google Scholar
  42. Gerke, V., and Weber, K. (1985b). The regulatory chain in the p36-kd substrate complex of viral tyrosine-specific protein kinases is related in sequence to the S-100 protein of glial cells. EMBO J. 4: 2917–2920.PubMedGoogle Scholar
  43. Giugni, T. D., James, L. C., and Haigler, H. T. (1985). Epidermal growth factor stimulates tyrosine phosphorylation of specific proteins in permeabilized human fibroblasts. J. Biol. Chem. 260: 15081–15090.Google Scholar
  44. Glenney, J. R. (1985). Phosphorylation of p36 in vitro with pp60src: Regulation by Ca2+ and phospholipid. FEBS Letters 192: 79–82.PubMedCrossRefGoogle Scholar
  45. Glenney, J. R. (1986a). Two related but different forms of the 36,000 Mr tyrosine kinase substrate (calpactins) which interact with phospholipid and actin in a Ca2+-dependent manner. Proc. Natl. Acad. Sci USA 83: 4258–4262.Google Scholar
  46. Glenney, J. R. (1986b). Phospholipid dependent Ca2+-binding by the 36Kd tyrosine kinase substrate (calpactin) and its 33Kd core. J. Biol. Chem. 261: 7247–7252.Google Scholar
  47. Glenney, J. R. (1986c). Co-precipitation of intestinal p36 with a 73K protein and a high molecular weight factor. Exp. Cell Res. 162: 183–190.Google Scholar
  48. Glenney, J. R., and Tack, B. F. (1985). Amino-terminal sequence of p36 and associated p10: Identification of the site of tyrosine phosphorylation and homology with S-100. Proc. Natl. Acad. Sci. USA 82: 7884–7888.Google Scholar
  49. Glenney, J. R., and Zokas, L. (1988). Antibodies to the N-terminus of calpactin II (p35) affect Ca++-binding and phosphorylation by the EGF receptor in vitro. Biochemistry, in press.Google Scholar
  50. Glenney, J. R., Boudreau, M., Galyean, R., Hunter, T., and Tack, B. F. (1986). Association of the S-100-related calpactin I light chain with the amino-terminal tail of the 36 kDa heavy chain. J. Biol. Chem. 261: 10485–10488.Google Scholar
  51. Glenney, J. R., Jr., Tack, B., and Powell, M. A. (1987) Calpactins: two distinct Ca2+-regulated phospholipid-and actin-binding proteins isolated from lung and placenta. J. Cell Biot. 104: 503–511.CrossRefGoogle Scholar
  52. Gould, K. L., Cooper, J. A., and Hunter, T. (1984). The 46,000-dalton tyrosine protein kinase substrate is widespread, whereas the 36,000-dalton substrate is only expressed at high levels in certain rodent tissues. J. Cell Biol. 98: 487–497.PubMedCrossRefGoogle Scholar
  53. Gould, K. L., Woodgett, J. R., Isacke, C. M., and Hunter, T. (1986). The protein-tyrosine kinase substrate, p36, is also a substrate for protein kinase C in vitro and in vivo. Mol. Cell. Biol. 6: 2738–2744.Google Scholar
  54. Greenberg, M. E., and Edelman, G. M. (1983a). Comparison of the 34,000-Da pp60src substrate and a 38,000-Da phosphoprotein identified by monoclonal antibodies. J. Biol. Chem. 258: 8497–8502.Google Scholar
  55. Greenberg, M. E., and Edelman, G. M. (1983b). The 34kd pp6osrc substrate is located at the inner face of the plasma membrane. Cell 33: 767–779.PubMedCrossRefGoogle Scholar
  56. Greenberg, M. E., Brackenbury, R., and Edelman, G. M. (1984). Changes in the distribution of the 34-kilodalton tyrosine kinase substrate during differentiation and maturation of chicken cells. J. Cell Biol. 98: 473–486.PubMedCrossRefGoogle Scholar
  57. Haigler, H. T., Schlaepfer, D. D., and Burgess, W. H. (1987). Characterization of lipocortin I and an immunologically unrelated 33-kDa protein as epidermal growth factor receptor/kinase substrates and phospholipase A2 inhibitors. J. Biol. Chem. 262: 6921–6930.Google Scholar
  58. Hexham, J. M., Totty, N. F., Waterfield, M. D., and Crumpton, M. J. (1986). Homology between the subunits of S100 and a 10 kDa polypeptide associated with p36 of pig lymphocytes. Biochem. Biophys. Res. Commun. 134: 248–254.Google Scholar
  59. Hirata, F. (1981). The regulation of lipomodulin, a phospholipase inhibitory protein, in rabbit neutrophils by phosphorylation. J. Biol. Chem. 256: 7990–7997.Google Scholar
  60. Hirata, F. (1984). Roles of lipomodulin: a phospholipase inhibitory protein in immunoregulation. Adv. Inflammation Res. 7: 71–78.Google Scholar
  61. Hirata, F., Matsuda, K., Notsu, Y., Hattori, T., and del Carmine, R. (1984). Phosphorylation at a tyrosine residue of lipomodulin in mitogen-stimulated murine thymocytes. Proc. Natl. Acad. Sci. USA 81: 4717–4721.Google Scholar
  62. Hirata, F., Schiffmann, E., Venkatasubramanian, K., Salomon, D., and Axelrod, J. (1980). A phospholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoids. Proc. Natl. Acad. Sci. USA 77: 2533–2536.Google Scholar
  63. Hollenberg, M. D., Northup, J. K., Valentine-Braun, K. A., Johnson, L. K., and Severson, D. L. (1987). Human placental lipocortin-I: Dissociation of phospholipase-inhibitory from antiinflammatory activity. Clin. Res. 35, 639a.Google Scholar
  64. Huang, K.-S., McGray, P., Mattaliano, R. J., Burne, C., Chow, E. P., Sinclair, L. K., and Pepinsky, R. B. (1987) Purification and characterization of proteolytic fragments of lipocortin I that inhibit phospholipase A2. J. Biol. Chem. 262: 7639–7645.Google Scholar
  65. Huang, K.-S., Wallner, B. P., Mattaliano, R. J., Tizard, R., Burne, C., Frey, A., Hession, C., McGray, P., Sinclair, L. K., Chow, E. P., Browning, J. L., Ramachandran, K. L., Tang, J., Smart, J. E., and Pepinsky, R. B. (1986). Two human 35-kd inhibitors of phospholipase A2 are related to substrates of pp60v-src and of the epidermal growth factor receptor/kinase. Cell 46: 191–199.PubMedCrossRefGoogle Scholar
  66. Hunter, T., and Cooper, J. A. (1981). Epidermal growth factor induces rapid tyrosine phosphorylation of proteins in A431 human tumor cells. Cell 24: 741–752.PubMedCrossRefGoogle Scholar
  67. Isacke, C. M., Trowbridge, I. S., and Hunter, T. (1986). Modulation of p36 phosphorylation in human cells: studies using anti-p36 monoclonal antibodies. Mol. Cell. Biol. 6: 2745–2751.Google Scholar
  68. Johnsson, N., Van, P. N., Söling, H.-D, and Weber, K. (1986a) Functionally distinct serine phosphorylation sites of p36, the cellular substrate of retroviral protein kinase; differential inhibition of reassociation with pll. EMBO J. 5: 3455–3460.PubMedGoogle Scholar
  69. Johnsson, N., Vandekerchove, J., Van Damme, J., and Weber, K. (1986b). Binding sites for calcium, lipid and pli on p36, the substrate of retroviral tyrosine-specific protein kinases. FEBS Letters 198: 361–364.PubMedCrossRefGoogle Scholar
  70. Khanna, N. C., Tokuda, M., and Waisman, D. M. (1986a). Phosphorylation of lipocortins in vitro by protein kinase C. Biochem. Biophys. Res. Commun. 141: 547–554.Google Scholar
  71. Khanna, N. C., Tokuda, M., Chong, S. M., and Waisman, D. M. (1986b). Phosphorylation of p36 in vitro by protein kinase C. Biochem. Biophys. Res. Commun. 137: 397–403.Google Scholar
  72. Kobayashi, N., and Kaji, A. (1980). Phosphoprotein associated with activation of the src gene product in myogenic cells. Biochem. Biophys. Res. Commun. 93: 278–284.Google Scholar
  73. Kristensen, T., Saris, C. J. M., Hunter, T., Hicks, L. J., Noonan, D. J., Glenney, J. R., and Tack, B. F. (1986). Primary sequence of bovine calpactin I heavy chain (p36), a major cellular substrate for retroviral protein-tyrosine kinases: homology with the human phospholipase A2 inhibitor, lipocortin. Biochemistry 25: 4497–4503.PubMedCrossRefGoogle Scholar
  74. Lehto, V-.P., Virtanen, I., Passivuo, R., Ralston, R., and Alitalo, K. (1983). The p36 substrate of tyrosine-specific protein kinases co-localizes with non-erythrocyte-spectrin, p230, in surface lamina or cultured fibroblasts. EMBO J. 2: 1701–1705.PubMedGoogle Scholar
  75. Magee, A. I., and Courtneidge, S. A. (1985). Two classes of fatty acylated proteins exist in eukaryotic cells. EMBO J. 4: 1137–1144.PubMedGoogle Scholar
  76. Mangeat, P. H., and Burridge, K. (1984). Immunoprecipitation of nonerythrocyte spectrin within live cells following microinjection of specific antibodies: relation to cytoskeletal structures. J. Cell Biol. 98: 1363–1377.PubMedCrossRefGoogle Scholar
  77. Martin, F., Derancourt, J., Capony, J.-P., Colote, S., and Cavadore, J.-C. (1987). Sequence homologies between p36, the substrate of pp6Osrc tyrosine kinase and a 67 kDa protein isolated from bovine aorta. Biochem. Biophys. Res. Commun. 145: 961–968.Google Scholar
  78. Michener, M. L., Dawson, W. B., and Creutz, C. E. (1986). Phosphorylation of a chromaffin granule-binding protein in stimulated chromaffin cells. J. Biol. Chem. 261: 6548–6555.Google Scholar
  79. Mollenhauer, J., and von der Mark, K. (1983). Isolation and characterization of a collagen-binding glycoprotein from chondrocyte membranes. EMBO J. 2: 45–50.PubMedGoogle Scholar
  80. Mollenhauer, J., and von der Mark, K. (1986). Anchorins: mediators of cell-matrix interaction. Front. Matrix Biol. 11: 110–122.Google Scholar
  81. Mollenhauer, J., Bee, J. A., Lizarbe, M. A., and von der Mark, K. (1984). Role of anchorin CII, a 31,000-mol-wt membrane protein, in the interaction of chondrocytes with type II collagen. J. Cell Biol. 98: 1572–1578.PubMedCrossRefGoogle Scholar
  82. Moore, P. B. (1986). 67 kDa calcimedin, a new Ca2+-binding protein. Biochem. J. 238: 49–54.Google Scholar
  83. Moore, P. B., and Dedman, J. R. (1982). Calcium-dependent protein binding to phenothiazine columns. J. Biol. Chem. 257: 9663–9667.Google Scholar
  84. Nakamura, K. D., and Weber, M. J. (1982). Phosphorylation of a 36,000 Mr cellular protein in cells infected with partial transformation mutants of Rous sarcoma virus. Mol. Cell. Biol. 2: 147–153.Google Scholar
  85. Nigg, E. A., Cooper, J. A., and Hunter, T. (1983). Immunofluorescent localization of a 39,000-dalton substrate of tyrosine protein kinases to the cytoplasmic surface of the plasma membrane. J. Cell Biol. 96: 1601–1609.PubMedCrossRefGoogle Scholar
  86. Owens, R. J., and Crumpton, M. J. (1984). Isolation and characterization of a novel 68,000-Mr, Ca2+-binding protein of lymphocyte plasma membrane. Biochem. J. 219: 309–316.Google Scholar
  87. Owens, R. J., Gallagher, C. J., and Crumpton, M. J. (1984). Cellular distribution of p68, a new calcium-binding protein from lymphocytes. EMBO J. 3: 945–952.PubMedGoogle Scholar
  88. Pepinsky, R. B., and Sinclair, L. K. (1986). Epidermal growth factor dependent phosphorylation of lipocortin. Nature 321: 81–84.PubMedCrossRefGoogle Scholar
  89. Pepinsky, R. B., Sinclair, L. K., Browning, J. L., Mattaliano, R. J., Smart, J. E., Chow, E. P., Falbel, T., Ribolini, A., Garwin, J. L., and Wallner, B. P. (1986). Purification and partial sequence analysis of a 37-kDa protein that inhibits phospholipase A2 activity from rat peritoneal exudates. J. Biol. Chem. 261: 4239–4246.Google Scholar
  90. Pollard, H. B., and Scott, J. H. (1982). Synhibin: a new calcium-dependent membrane-binding protein that inhibits synexin-induced chromaffin granule aggregation and fusion. FEBS Letters 150: 201–206.PubMedCrossRefGoogle Scholar
  91. Powell, M. A., and Glenney, J. R. (1987). Regulation of calpactin I phospholipid binding by calpactin I light chain binding and phosphorylation by p60v-src. Biochem. J. 247: 321–328.Google Scholar
  92. Radke, K., and Martin, G. S. (1979). Transformation by Rous sarcoma virus: Effects of src gene expression on the synthesis and phosphorylation of cellular polypeptides. Proc. Natl. Acad. Sci. USA 76: 5212–5216.Google Scholar
  93. Radke, K., Gilmore, T., and Martin, G. S. (1980). Transformation by Rous sarcoma virus: a cellular substrate for transformation-specific protein phosphorylation contains phosphotyrosine. Cell 21: 821–828.PubMedCrossRefGoogle Scholar
  94. Radke, K., Carter, V. C., Moss, P., Dehazya, P., Schliwa, M., and Martin, G. S. (1983). Membrane association of a 36,000 dalton substrate for tyrosine phosphorylation in chicken embryo fibroblasts transformed by avian sarcoma viruses. J. Cell Biol. 97: 1601–1611.PubMedCrossRefGoogle Scholar
  95. Rocha, V., Hom, Y. K., and Marinkovich, M. P. (1986). Basal lamina inhibition suppresses synthesis of calcium-dependent proteins associated with mammary epithelial cell spreading. Exp. Cell Res. 165: 450–460.Google Scholar
  96. Saris, C. J. M., Tack, B. F., Kristensen, T., Glenney, J. R., and Hunter, T. (1986) The cDNA sequence for the protein-tyrosine kinase substrate p36 (calpactin I heavy chain) reveals a multidomain protein with internal repeats. Cell 46: 201–212.PubMedCrossRefGoogle Scholar
  97. Saris, C. J. M., Kristensen, T., D’Eustachio, P., Hicks, L. J., Noonan, D. J., Hunter, T., and Tack, B. F. (1987). cDNA sequence and tissue distribution of the mRNA for bovine and murine pll, the 5100-related light chain of the protein-tyrosine kinase substrate p36 (calpactin I). J. Biol. Chem. 262: 10663–10671.Google Scholar
  98. Sawyer, S. T., and Cohen, S. (1985). Epidermal growth factor stimulates the phosphorylation of the calcium-dependent 35,000-dalton substrate in intact A-431 cells. J. Biol. Chem. 260: 8233–8236.Google Scholar
  99. Schlaepfer, D. D., and Haigler, H. T. (1987). Characterization of Ca2+-dependent phospholipid binding and phosphorylation of lipocortin I. J. Biol. Chem. 262: 6931–6937.Google Scholar
  100. Sefton, B. M., Hunter, T., and Cooper, J. (1983). Some lymphoid cell lines transformed by Abelson murine leukemia virus lack a major 36,000-dalton tyrosine protein kinase substrate. Mol. Cell. Biol. 3: 56–63.Google Scholar
  101. Sen-Majumdar, A., Murthy, U., and Das, M. (1986). A new trophoblast-derived growth factor from human placenta: purification and receptor identification. Biochemistry 25: 627–634.PubMedCrossRefGoogle Scholar
  102. Shadle, P. J., and Weber, K. (1987). Calcium binding protein from porcine intestine binds to phosphatidylserine vesicles in the presence of calcium. Biochim. Biophys. Acta 897: 502–506.Google Scholar
  103. Shadle, P. J., Gerke, V., and Weber, K. (1985). Three Ca2+-binding proteins from porcine liver and intestine differ immunologically and physicochemically and are distinct in Ca2+ affinities. J. Biol. Chem. 260: 16354–16360.Google Scholar
  104. Sheets, E. E., Giugni, T. D., Coates, G. G., Schlaepfer, D. D., and Haigler, H. T. (1987). Epidermal growth factor dependent phosphorylation of a 35-kilodalton protein in placental membranes. Biochemistry 26: 1164–1172.PubMedCrossRefGoogle Scholar
  105. Silva, F. G., Sherrill, K., Spurgeon, S., Sddhof, T. C., and Stone, D. K. (1986). High-level expression of the 32.5-kilodalton calelectrin in ductal epithelia as revealed by immunocytochemistry. Differentiation 33: 175–183.PubMedCrossRefGoogle Scholar
  106. Smith, V. L., and Dedman, J. R. (1986). An immunological comparison of several novel calcium-binding proteins. J. Biol. Chem. 261: 15815–15818.Google Scholar
  107. Soric, J., and Gordon, J. A. (1985). The 36kd substrate of pp60v-src is myristylated in a transformation-sensitive manner. Science 230: 563–566.PubMedCrossRefGoogle Scholar
  108. Soric, J., and Gordon, J. A. (1986). Calcium-dependent isolation of the 36-kilodalton substrate of pp60src_kinase. J. Biol. Chem. 261: 14490–14495.Google Scholar
  109. Sddhof, T. C. (1984a). Calelectrins are a ubiquitous family of Cat+-binding proteins purified by Cat+-dependent hydrophobic affinity chromatography by a mechanism distinct from that of calmodulin. Biochem. Biophys. Res. Commun. 123: 100–107.Google Scholar
  110. Sddhof, T. C. (1984b). The calelectrins: new and ubiquitous Cat+-regulated proteins with a possible role in cytotic processes. Biochem. Soc. Trans. 12: 972–974.Google Scholar
  111. Sddhof, T. C., Ebbecke, M., Walker, J. H., Fritsche, U., and Boustead, C. (1984). Isolation of mammalian calelectrins: a new class of ubiquitous Cat-regulated proteins. Biochemistry 23: 1103–1109.CrossRefGoogle Scholar
  112. Sddhof, T. C., Slaughter, C. A., Leznicki, I., Barjon, P., and Reynolds, G. A. (1988) Human 67 kDa calelectrin contains a duplication of four repeats found in 35 kDa lipocortins. Proc. Natl. Acad. Sci. USA, in press.Google Scholar
  113. Sddhof, T. C., Walker, J. H., and Obrocki, J. (1982). Calelectrin self-aggregates and promotes membrane aggregation in the presence of calcium. EMBO J. 1: 1167–1170.Google Scholar
  114. Summers, T. A., and Creutz, C. E. (1985). Phosphorylation of a chromaffin granule-binding protein by protein kinase C. J. Biol. Chem. 260: 2437–2443.Google Scholar
  115. Taylor, W.R., and Geiso, M. J. (1987). Prdicted structure for the calcium-dependent membrane-binding proteins p35, p36 and p32. Protein Engineering 1: 183–187.PubMedCrossRefGoogle Scholar
  116. Touqui, L., Rothhut, B., Shaw, A. M., Fradin, A., Vargaftig, B. B., and Russo-Marie, F. (1986). Platelet activation-a role for a 40K antiphospholipase A2 protein indistinguishable from lipocortin. Nature 321: 177–180.PubMedCrossRefGoogle Scholar
  117. Tufty, R. M., and Kretsinger, R. H. (1975). Troponin and parvalbumin calcium binding regions predicted in myosin light chain and T4 lysozyme. Science 187: 167–169.PubMedCrossRefGoogle Scholar
  118. Valentine-Braun, K. A., Northup, J. K., and Hollenberg, M. D. (1986). Epidermal growth factor (urogastrone)-mediated phosphorylation of a 35-kDa substrate in human placental membranes: relationship to the fi subunit of the guanine nucleotide regulatory complex. Proc. Natl. Acad. Sci. USA 83: 236–240.Google Scholar
  119. Walker, J. H. (1982). Isolation from cholinergic synapses of a protein that binds to membranes in a calcium-dependent manner. J. Neurochem. 39: 815–823.PubMedCrossRefGoogle Scholar
  120. Wallner, B. P., Mattaliano, R. J., Hession, C., Cate, R. L., Tizard, R., Sinclair, L. K., Foeller, C., Chow, E. P., Browning, J. L., Ramachandran K. L., and Pepinsky, R. B. (1986). Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. Nature 320: 77–81.PubMedCrossRefGoogle Scholar
  121. Weber, K., and Johnsson, N. (1986). Repeating sequence homologies in the p36 target protein of retroviral protein kinases and lipocortin, the p37 inhibitor of phospholipase A2. FEBS Letters 203: 95–98.PubMedCrossRefGoogle Scholar
  122. Weber, K., Johnsson, N., Plessmann, U., Van, P. N., Söling, H.-D., Ampe, C., and Vandekerckhove, J. (1987). The amino acid sequence of protein II and its phosphorylation site for protein kinase C; the domain structure Ca2+-modulated lipid binding proteins. EMBO J. 6: 1599–1604.Google Scholar
  123. Zokas, L., and Glenney, J. R., Jr. (1987). The calpactin light chain is tightly linked to the cytoskeletal form of calpactin I: studies using monoclonal antibodies to calpactin subunits. J. Cell Biol. 105: 2111–2121.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Tony Hunter
    • 1
  1. 1.Molecular Biology and Virology LaboratoryThe Salk InstituteSan DiegoUSA

Personalised recommendations