Advertisement

Uptake of Ascorbic Acid and Its Oxidized Products in the Isolated Guinea Pig Placenta

  • Heinz-Peter Leichtweiss
  • Belisario Lisbôa
  • Christiane Steinborn
Chapter
Part of the Trophoblast Research book series (TR)

Abstract

Placental transfer of ascorbic acid has been studied in man (Hensleigh and Krantz, 1966; Streeter and Rosso, 1981) and guinea pig (Raiha, 1958; Norkus et al., 1979, 1982). In both, the transfer is assumed to the carrier-mediated. Because the concentrations of total ascorbic acid in plasma and tissue are higher in the fetus than in the mother (Wahren and Rundqvist, 1937; Moller-Christensen and Thorup, 1940; Lund and Kimble, 1943; Raiha, 1958) two different modes of transport are assumed: 1) The transport of ascorbic acid is energy dependent and moves uphill (Hensleigh and Krantz, 1966) and 2) Only the oxidized form of ascorbic acid, that is dehydroascorbic acid, is transferred into the fetus by passive carrier mediated diffusion, where it is reduced to ascorbic acid (Raiha, 1958; Norkus et al., 1979). These hypotheses have not been sufficiently verified until now. It is not known whether ascorbic acid, its oxidized products, or both are transported in the placenta.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bissonette, J.M., Hohimer, A.R., Cronan, J.Z., and Black, J.A. (1979) Glucose transfer across the intact guinea pig placenta. J. Dey. Physiol. 1, 415–426.Google Scholar
  2. Bessey, O.A., Oliver, H.L., and Brock, M.J. (1947) The quantitative determination of ascorbic acid in small amounts of white blood cells and platelets. J. Biol. Chem. 168, 197–205.PubMedGoogle Scholar
  3. Carstensen, M.H., Leichtweiss, H.-P., and Schröder, H. (1982) Uptake and transfer of labelled L-alanine and insulin in the perfused guinea pig placenta. Pflügers Arch. 392, R17.Google Scholar
  4. Cunningham, V.J. and Sarna, G.S. (1979) Estimation of kinetic parameters of unidirectional transport across the blood-brain barrier. J. Neurochemics 33, 433–437.CrossRefGoogle Scholar
  5. Hensleigh, P.A. and Krantz, K.E. (1966) Extracorporeal perfusion of the human placenta. I. Placental transfer of ascorbic acid. Am. J. Obstet. Gynecol. 96, 513.Google Scholar
  6. Leichtweiss, H.-P., and Schröder, H. (1971) Untersuchungen uber den Glucosetransport durch die isolierte, beiderseits künstlich perfundierte Meerschweinchenplacenta. Pflügers Arch. 325, 139–148.PubMedCrossRefGoogle Scholar
  7. Leichtweiss, H.-P. and Schröder, H. (1981a) L-lactate and D-lactate carriers on the fetal and the maternal side of the trophoblast in the isolated guinea pig placenta. Pflügers Arch. 390, 80–85.PubMedCrossRefGoogle Scholar
  8. Leichtweiss, H.-P. and Schröder, H. (1981b) Dual perfusion of the isolated guinea-pig placenta. Placenta Suppl. 2, 119–128.Google Scholar
  9. Lund, C. and Kimble, M. (1943) Some determination of maternal and fetal vitamin C levels. Am. J. Obstet. Gynecol. 46, 635–647.Google Scholar
  10. Moller-Christensen, E. and Thorup, C. (1940) Über das Vorkommen von Vitamin C in Plazenta, Nabelstrangblut, Venenblut und Colostrum. Zentralbl. Gynäkol. 64, 1858–1861.Google Scholar
  11. Moser, U. and Weber, F. (1984) Uptake of ascorbic acid by human granulocytes. Int. J. Vit. Nutr. Res. 54, 47–53.Google Scholar
  12. Norkus, E.P., Bassi, J., and Rosso, P. (1979) Maternal-fetal transfer of ascorbic acid in the guinea-pig. J. Nutr. 109, 2205–2212.PubMedGoogle Scholar
  13. Norkus, E.P., Bassi, J.A., and Rosso, P. (1982) Maternal hyperglycemia and its effect on the placental transport of ascorbic acid. Pediat. Res. 16, 746–750.PubMedCrossRefGoogle Scholar
  14. Penny, J.R. and Zilva, S.S. (1943) The chemical behaviour of dehydro-L-ascorbic acid in vitro and in vivo. Biochem. J. 37, 403–417.Google Scholar
  15. Raiha, N. (1958) On the placental transfer of vitamin C. An experimental study on guinea pigs and human subjects. Acta Physiol. Scand. 45, Suppl. 155, 27–42.Google Scholar
  16. Roe, J.H. (1961) Appraisal of methods of the determination of L-ascorbic acid. Ann. NYAcad. Sci. 92, 277–283.Google Scholar
  17. Stevenson, N.R. and Brush, M.K. (1969) Existence and characteristics of Na+-dependent active transport of ascorbic acid in guinea pig. Am. J. Clin. Nutr. 22, 318–326.Google Scholar
  18. Streeter, M.L. and Rosso, P. (1981) Transport mechanisms for ascorbic acid in the human placenta. Am. J. Clin. Nutr. 34, 1706–1711.PubMedGoogle Scholar
  19. Wahren, H. and Rundqvist, O. (1937) Uber den Ascorbinsäuregehalt des Blutes von, Mutter und Frucht. Klin. Wchnschr. 16, 1498–1499.CrossRefGoogle Scholar
  20. Yudilevich, D.L., Eaton, B.M., Short, A.H., and Leichtweiss, H.-P. (1979) Glucose carriers at maternal and fetal sides of the trophoblast in guinea pig placenta. Am. J. Physiol. 237, C205 - C212.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Heinz-Peter Leichtweiss
    • 1
  • Belisario Lisbôa
    • 1
  • Christiane Steinborn
    • 1
  1. 1.Abtlg. exper. Med.UniversitätsfrauenklinikHamburg 20Germany

Personalised recommendations